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Abstract

The phonation threshold value of the lung pressure has been interpreted as a
measure of ease of phonation and proposed as a diagnostic parameter for vocal
health. Therefore, it is important to understand its behavior as a function
of laryngeal parameters, particularly in abnormal configurations. This paper
compares results from a theoretical model of the vocal folds with measures
from a mechanical replica, in the presence of a natural frequency asymmetry. It
shows that, at small asymmetry, the threshold pressure increases with the degree
of asymmetry, whereas at large asymmetry, the threshold pressure reaches a
plateau.
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1. Introduction

During phonation, the right and left vocal folds act as a pair of coupled
oscillators. In normal healthy conditions, they have a symmetrical configuration
and oscillate in complete in-phase synchrony [1]. Abnormal conditions such as
tissue lesions and neurological disorders introduce right-left asymmetries which
may hamper the oscillation and cause phase differences, complex entrainment
regimes and other nonlinear phenomena [2, 3, 4, 5].

An important parameter of the vocal fold oscillation is the so-called phona-
tion threshold pressure, which is defined as the minimum lung pressure required
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to start phonation [6]. The threshold pressure appears as a relevant parameter
in equations of voice aerodynamics and has been interpreted as a measure of
“ease of phonation” [7]. A number of studies have shown that its value increases
with abnormal laryngeal conditions such as dehydration [8], fatigue [9], tissue
scarring [10] and others, favoring its application as an assessment tool for vocal
health.

In a recent theoretical study, the effect of a natural frequency asymmetry
on the threshold pressure was analyzed and different patterns at small vs. large
asymmetries were detected [11]. If the asymmetry is small, then the threshold
pressure value has a minimum at the symmetric configuration and increases
with the degree of asymmetry. On the other hand, if the asymmetry is large,
then the threshold pressure assumes a constant value. The existence of such a
region with constant threshold pressure would indicate caution in its proposed
application for clinical assessment, because an increase or decrease of asymmetry
(i.e., the abnormality) would not necessarily reflect in a respective increase or
decrease of threshold pressure, when the asymmetry is large. Thus, the present
study has the purpose of analyzing further this effect by comparing the theory
with data collected from a mechanical replica of the vocal folds.

2. Theoretical model

2.1. Equations of motion

Following [12], the right vocal fold is represented as a one-degree-of-freedom
oscillator of the form

Mẍr +B(1 + ηx2r)ẋr +Kxr = Pg, (1)

where xr is the tissue displacement, M , B and K are the mass, damping and
stiffness, respectively, per unit area of the vocal fold medial surface, η is a
nonlinear coefficient to account for energy dissipation at large amplitudes, and
Pg is the glottal air pressure averaged over the medial fold surface. A similar
equation in the variable x` is used for the left vocal fold. Both xr and x` are
defined as positive in the direction of glottal opening.

The glottal airflow is assumed frictionless, stationary, and incompressible,
and any effects of the sub- and supraglottal systems are neglected. Then, the
subglottal pressure is equal to the lung pressure, and the pressure at the glottal
exit is atmospheric. Under such conditions, the glottal pressure Pg may be
approximated by

Pg =
τPs

ktx0
(ẋr + ẋ`) , (2)

where τ is the time delay for the superficial mucosal wave on the fold tissue to
travel half the glottal depth (in the direction of the air flow), Ps is the subglottal
pressure, kt is a transglottal pressure loss coefficient, and x0 is the glottal half-
width (in the lateral direction) at the prephonatory position (phonation neutral
position) [11].

2



The natural frequency of the right vocal fold is ωr =
√
K/M . Introducing

a coefficient of asymmetry Q for the natural frequency of the left vocal fold, in
the form ω` = Qωr [13], then the system of equations for the right and left folds
may be written as

ẍr + β(1 + ηx2r)ẋr + ω2
rxr = α(ẋr + ẋ`), (3)

ẍ` + β(1 + ηx2`)ẋ` +Q2ω2
rx` = α(ẋr + ẋ`), (4)

where β = B/M , and

α =
SPs

kta0cM
(5)

is the aerodynamic coupling, where a0 = 2Lx0 is the prephonatory glottal area,
L is the glottal length (in the anterior-posterior direction), c = T/(2τ) is the
mucosal wave velocity, T is the glottal depth, and S = LT is the medial surface
of the vocal folds.

2.2. Oscillation threshold

The equilibrium position of the vocal folds is obtained by setting all deriva-
tives to zero in Eqs. (3) and (4), which yields xr = 0, x` = 0. A standard
stability analysis for that position produces the characteristic equation

s4 + 2(β − α)s3 + [ω2
r(Q2 + 1) + β(β − 2α)]s2

+ ω2
r(Q2 + 1)(β − α)s+Q2ω4

r = 0, (6)

where s is a complex variable. When the subglottal pressure is Ps = 0, then
α = 0 and all roots of Eq. (6) have negative real parts [11]. In this case, the
equilibrium position is stable. As Ps increases, the roots cross the imaginary
axis and the equilibrium becomes unstable. The oscillation threshold is obtained
by letting s = ±iω and separating real and imaginary parts, which yields

ω4 − [ω2
r(Q2 + 1) + β(β − 2α)]ω2 +Q2ω4

r = 0, (7)

(β − α)[2ω2 − ω2
r(Q2 + 1)] = 0. (8)

Solutions to Eq. (8) are

ω = ωr

√
Q2 + 1

2
, (9)

and
α = β (10)

Substituting Eq. (9) in Eq. (7) produces

α =
β

2
+
ω2
r

4β

(Q2 − 1)2

Q2 + 1
. (11)

Eq. (11) may be simplified by substituting ωr from Eq. (9), and next
defining

∆ =
Q2 − 1

Q2 + 1
, (12)
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which is a normalized asymmetry coefficient that maps Q ∈ [0,∞) into ∆ ∈
[−1,+1). Finally, substituting α from Eq. (5) and solving for the subglottal
pressure, we obtain the oscillation threshold pressure

Ps = P0

[
1 +

(
ω∆

β

)2
]
, (13)

where

P0 =
ktβa0cM

2S
(14)

is its value at the symmetric condition ∆ = 0.
Another solution to Eq. (8) is given by Eq. (10), which produces the thresh-

old pressure
Ps = 2P0. (15)

In this case, the oscillation frequency at the threshold is obtained by substituting
Eq. (10) into Eq. (7), which yields

ω4 − [ω2
r(Q2 + 1)− β2]ω2 +Q2ω4

r = 0, (16)

and may have up to two real solutions.
Both Eqs. (13) and (15) coincide when

|∆| = β/ω. (17)

The above results are summarized and illustrated in Fig. 1. At small asym-
metries (|∆| ≤ β/ω), the threshold pressure has a minimum at the symmetric
configuration (∆ = 0) and increases monotonically with the asymmetry follow-
ing Eq. (13). The same pattern applies to the oscillation frequency. Both left
and right vocal folds oscillate with the same frequency, given by Eq. (9). On the
other hand, at large asymmetries (|∆| ≥ β/ω), the threshold pressure assumes
a constant value in relation to the asymmetry, given by Eq. (15). Two different
values of the oscillation frequency appear, given by Eq. (16); the lowest one cor-
responds to the lax vocal fold and the highest one to the stiff vocal fold. Thus,
the vocal folds oscillate without synchronization, each one at its own oscillation
frequency.

3. Data collection

Measures of oscillation threshold parameters were collected from a mechani-
cal replica of the vocal folds. The replica and data collection method have been
described in detail elsewhere [14, 15]. Briefly, the replica consists of two parallel
latex tubes filled with water under pressure and supported by a metallic struc-
ture. The tubes represent the vocal folds in a 3:1 scale, and the internal water
pressure of each tube can be set independently so that a stiffness asymmetry
(and consequently, a natural frequency asymmetry) can be imposed in a con-
trolled way. Air from a pressure reservoir is blown through a third latex tube,
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Figure 1: Oscillation threshold parameters. Top: subglottal pressure, (a) Eq. (13), (b) Eq.
(15). Bottom: oscillation frequency, (a) Eq. (9), (b) Eq. (16).
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Figure 2: Example of the data collected from the replica when varying the upstream pres-
sure. Top: subglottal pressure; the black curve is the mean pressure. Bottom: fundamental
frequency. The broken line in each plot marks the oscillation threshold.

representing the glottal passage, situated in-between the two vocal fold tubes
and perpendicular to them.

Values of oscillation threshold pressure and frequency were obtained by in-
creasing the air pressure upstream of the replica from zero until an oscillation
of the tubes was detected. The time instant of oscillation onset was determined
by spectral analysis of the pressure signal measured immediately upstream the
replica (subglottal pressure). Then, the mean subglottal pressure and oscil-
lation frequency at that instant were computed (Fig. 2). The glottal area at
rest was determined from pictures taken by a digital camera, calibrated with a
benchmark grid.

Three experiments were performed, in which measures of the above param-
eters (pressure, frequency and area) were taken at various values of internal
(water) pressures of the vocal fold tubes, in symmetrical and asymmetrical con-
figurations. The theoretical model was next fitted to the collected data with
the results shown in the next sections.
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4. Experiment #1

In this experiment, the internal pressure of both vocal fold tubes was varied
simultaneously between 4 kPa and 8.5 kPa, keeping a symmetrical configuration.
In the symmetric case, the theoretical model produces a threshold pressure
Ps = P0 and an oscillation frequency ω = ωr.

The natural frequencies ωr of the tubes were approximated by their reso-
nance frequencies, obtained from [15]. The first (lowest) resonance frequency
is close to the oscillation frequency, and both are shown in the middle panel of
Fig. 3 for comparison.

The threshold pressure was computed using Eq. (14). However, as the in-
ternal pressure of the tubes is increased, their volume also increases and all pa-
rameters in that equation vary. For the transglottal coefficient (kt) we adopted
an expression of the form

kt =
E

a0
+ F, (18)

where E and F are coefficients to be determined [16]. The prephonatory glottal
area a0 was directly measured from the replica, as explained in the previous
section, and is shown in the bottom panel of Fig. 3. The other parameters in
Eq. (14) are more difficult to model or measure, and were simply lumped into
a single coefficient, as follows. Substituting Eq. (18) into Eq. (14), we obtain

P0 = G (1 + F ′a0) , (19)

where F ′ = F/E and G = βcME/(2S).
The top panel in Fig. 3 shows measures of threshold pressure and the fit

provided by the above Eq. (19), with G = 626.5 Pa and F ′ = −0.052 mm−2.
The theoretical model produces a good prediction of the data, and we note that
the increase of threshold pressure with internal pressure is a direct consequence
of the glottal area variation.

5. Experiment #2

In this experiment, the internal pressure of one fold was fixed at 6.0 kPa
whereas the internal pressure of the other was varied between 4.1 kPa and 8.3
kPa. The intention was to obtain both negative and positive values of the
asymmetry coefficient ∆, and the results are shown in Fig. 4.

The oscillation frequency is well approximated by Eq. (9) (Fig. 4, middle
panel). In this case, ωr was set equal to the second resonance frequency of the
tubes, which was obtained from [15].

The threshold pressure was fitted using Eq. (13), and using the same ap-
proximation for P0 as in Experiment #1, which produces

Ps = G (1 + F ′a0)

[
1 +

(
ω∆

β

)2
]
. (20)
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Figure 3: Results of Experiment #1. Top: oscillation threshold pressure, middle: oscillation
frequency, bottom: glottal area at rest. Red circles: collected data, blue squares: theoretical
results.
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The top panel of Fig. 4 shows both the data and results from the above equation
with G = 640.1 Pa, F ′ = −0.039 mm−2, and β = 12900 s−1. Again, we obtained
a good match between theoretical results and data.

The values of |∆| that separate the regions of small and large asymmetry,
given by Eq. (17), fall between 0.106 and 0.116 (depending on the oscillation
frequency ω). On the other hand, the range of values of ∆ in this experiment
is [−0.116, 0.099]. Thus, the results are contained within the small asymmetry
region (except extreme points at most), which justifies the selection of Eqs. (9)
and (13) to fit the data.

6. Experiment #3

In this experiment, the internal pressure of one fold was fixed at 2.5 kPa
whereas the internal pressure of the other was varied between 2.5 kPa and 5.4
kPa. The intention was to obtain larger values of the asymmetry coefficient ∆,
and the results are shown in Fig. 5.

The top panel of Fig. 5 shows that the oscillation threshold pressure increases
briefly for small values of ∆, next reaches a plateau followed by a decrease. This
pattern matches approximately the pattern in the top panel of Fig. 1, except for
the decrease of pressure at the right. The border between the regions of small
and large asymmetry would be then located at the point when the pressure
reaches a plateau (approximately third data point), and the parameters of the
theoretical model were adjusted to obtain such result.

The oscillation frequency was approximated by Eqs. (9) and (16) (Fig. 4,
middle panel). The value of ωr was set equal to the first resonance frequency
of the tubes, as in Experiment #1. Note that the theoretical model predicts
two oscillation frequencies in the region of large asymmetry (one for each vocal
fold oscillator, as explained in Section 2.2). On the other hand, the experimen-
tal setup produces a single value of the oscillation frequency, which is closer
to the highest of the theoretical frequencies. A possible interpretation is that
the stiffer vocal fold tube dominates the oscillation entraining the lax one, in a
phenomenon similar to the broadband synchronization detected in [11]. How-
ever, such a phenomenon can not be captured by our present model owing to
its simplicity.

The threshold pressure was fitted using Eqs. (13) and (15), and using the
same approximation for P0 as in Experiment #1. The top panel of Fig. 5 shows
both the data and results with G = 81.8 Pa, F ′ = 0.044 mm−2, and β = 27.9
s−1. The fit is close for the small asymmetry and the plateau region, but it is
not able to capture well the decrease of pressure in the right half of the plot.
Note that the value of β is much smaller from the one obtained for Experiment
#2. One possible explanation could be that the replica was set in a different
configuration, as shown by the larger values of prephonatory glottal area in the
bottom panel of Fig. 5.

The values of ∆ that separates the regions of small and large asymmetry,
given by Eq. (17), fall between 0.0477 and 0.0460, approximately at the left of
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Figure 4: Results of Experiment #2. Top: oscillation threshold pressure, middle: oscillation
frequency, bottom: glottal area at rest. Red circles: collected data, blue squares: theoretical
results.
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third data point (with ∆ = 0.0496). The difference with the value obtained for
Experiment #2 is caused by the smaller value of parameter β.

7. Conclusions

Our results show different patterns of variation for the phonation threshold
pressure in regions of low vs. high asymmetry of the vocal folds. At low asym-
metry, the threshold pressure increases with the asymmetry, whereas at large
asymmetry the threshold pressure assumes a constant value or even a decrease,
as shown by the measured data.

In general, the empirical models given by Eqs. (19) and (20) show good
agreement with the collected data, except for the decrease of threshold pressure
seen at large asymmetry, in Experiment #3. A difficulty when comparing the
models with the measured data is that variations of the internal pressure of the
latex tubes affect not only their natural frequency but also their volume, intro-
ducing variations in parameters such as oscillating mass and medial surface that
are not contemplated by the theory. Future research efforts will be dedicated to
solve such difficulties with improved theoretical models and new experimental
setups.

Acknowledgments

This work was done while Jorge C. Lucero was a visiting researcher of
Grenoble-Alpes University at LEGI/CNRS UMR 5519 (Campagne chercheurs
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