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This article presents an analysis of entrained oscillations of the right and left vocal folds in the

presence of asymmetries. A simple one-mass model is proposed for each vocal fold. A stiffness

asymmetry and open glottis oscillations are considered first, and regions of oscillation are deter-

mined by a stability analysis and an averaging technique. The results show that the subglottal

threshold pressure for 1:1 entrainment increases with the asymmetry. Within that region, both

folds oscillate with the same amplitude and with the lax fold delayed in time with regard to the

tense fold. At large asymmetries, a region involving several different phase entrainments or toroi-

dal regimes at constant threshold pressure appears. The effect of vocal fold collisions and asym-

metry in the damping coefficients of the oscillators are explored next by means of numerical

analyses. It is shown that the damping asymmetry expands the 1:1 entrainment region at low sub-

glottal pressures across the whole asymmetry range. In the expanded region, the oscillator with the

lowest natural frequency is dominant and the other oscillator has a large phase advance and small

amplitude. The theoretical results are finally compared with data collected from a mechanical

replica of the vocal folds. VC 2015 Acoustical Society of America.
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[ZZ] Pages: 2036–2046

I. INTRODUCTION

The right and left vocal folds constitute a pair of

coupled biomechanical oscillators, where the coupling is

provided mainly by interaction with the airflow through

the glottis and by collision between the folds during the

oscillatory cycle. In normal conditions, anatomical differ-

ences between the oscillators are small enough so that

they are self-entrained in complete in-phase synchrony,

i.e., they oscillate with a common frequency and similar

phase (Titze, 1994). Tissue lesions, neurological disorders,

and other abnormalities introduce right–left asymmetries,

which may cause a phase difference between the vocal

folds (Schwarz et al., 2006; Zhang et al., 2013), oscilla-

tions at various phase entrainment regimes (Eysholdt

et al., 2003; Mergell et al., 2000; Zhang, 2010), quasi-

periodic oscillations (Tigges et al., 1997; Wilden et al.,
1998), and irregular (possible chaotic) oscillations (Berry

et al., 1996).

Let us recall here that two oscillators are in an n:m
phase entrainment regime if their respective phases,

denoted as u1;2ðtÞ, satisfy jnu1 � mu2j < M, where M is a

constant and n,m are integers (Pikovsky et al., 2001). In the

past decades, several theoretical models have been

proposed to characterize the entrainment dynamics of

asymmetric vocal folds (e.g., Erath et al., 2013; Herzel and

Knudsen, 1995; Ishizaka and Isshiki, 1976; Mergell and

Herzel, 1997; Smith et al., 1992; Steinecke and Herzel,

1995; Zhang and Jiang, 2004; Zhang and Luu, 2012).

Among them, a popular and simple model has been the

asymmetric two-mass model (Steinecke and Herzel, 1995),

in which each vocal fold is represented as a coupled two-

mass oscillator and an asymmetry is introduced in the natu-

ral frequencies. In general, the models have revealed a rich

variety of nonlinear phenomena that match reported experi-

mental observations. However, such a dynamics is still far

from being completely understood (Zhang, 2010). In fact,

inconsistencies of past results regarding characteristics of

amplitude and phase of the asymmetric oscillations have

been reported (Zhang and Luu, 2012). Considering a tense

fold vs a lax fold (as in a unilateral paralysis), it is not clear

whether the lax fold precedes the tense fold in phase during

the oscillation, or the tense precedes the lax fold. Also,

studies have reported either oscillation with similar ampli-

tudes for both folds or one of the folds with greater ampli-

tude than the other (see Zhang and Luu, 2012, for a

detailed discussion of the inconsistencies). It has also been

shown that several of the nonlinear phenomena found in

the asymmetric two-mass model are actually artifacts owing

to modeling limitations of the forcing functions (Erath

et al., 2013). When the limitations are removed, several
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regions of n:m phase entrainment disappear, and the model

oscillates in either 1:1 or 1:2 regimes.

An additional interesting phenomenon has been

recently detected in experiments with a physical model of

the vocal folds (Zhang and Luu, 2012; Zhang et al., 2013).

At feeble asymmetries, both folds oscillate in 1:1 entrain-

ment with similar amplitudes and with the stiffer fold lead-

ing in phase. When the asymmetry is increased, the vocal

folds turn to a different oscillatory regime, where the lax

fold dominates. In this regime, the frequency is lower and

determined by the lax fold, and the stiff fold follows the lax

one in anti-phase with much smaller amplitude. The phe-

nomenon was reproduced by numerical simulations on a

vocal fold model and described in terms of eigenmode syn-

chronization. However, a clearer picture of its dynamics

would be desirable.

The purpose of this article is to investigate the dynamics

of right–left vocal fold entrainment by using a simple model.

The model is related to the classical van der Pol oscillator

(Cartwright, 1960) and also to Adler’s equation of phase dy-

namics (Adler, 1946), both ubiquitous in oscillatory systems

studied in mathematical physiology (e.g., Glass, 2001; Glass

and Mackey, 1988; Edelstein-Keshet, 2005). The model is

first developed and analyzed using standard stability analysis

and perturbation techniques. Next, its behavior in more com-

plex configurations is explored using numerical solutions.

Finally, the theory is compared with data measured on a me-

chanical replica of the vocal folds.

II. MODEL

A. Basic equations

Following previous work (Laje et al., 2001; Lucero

et al., 2011), each vocal fold is represented by a lumped

mass-damper-spring oscillator of the form

M€xr þ Bð1þ gx2
r Þ _xr þ Kxr ¼ Pg; (1)

where xr is the tissue displacement of the right vocal fold,

M, B, and K are the mass, damping, and stiffness, respec-

tively, per unit area of the vocal fold medial surface, g is a

nonlinear coefficient to account for energy dissipation at

large amplitudes, and Pg is the glottal mean air pressure. The

left vocal fold is modeled with a similar equation in the vari-

able x‘.
The glottal airflow is assumed frictionless, stationary,

and incompressible. Up to the glottal exit, the airflow fol-

lows Bernoulli’s law, and at the glottal exit all the flow

energy is lost due to turbulence. For simplicity, all the loads

presented by the sub- and supraglottal systems are neglected.

In this way, any effect of the vocal tract-source interaction

on the oscillation dynamics is eliminated. Therefore, the sub-

glottal pressure Ps is assumed equal to a constant lung pres-

sure, and the pressure at the glottal exit is atmospheric.

Under these conditions, the glottal mean air pressure may be

simply expressed by

Pg ¼ Ps
a1 � a2

a1

� �
; a1; a2 > 0; (2)

where Ps is the subglottal pressure and a1 and a2 are the

cross-sectional glottal areas at the lower and upper edges of

the vocal folds, respectively. Further, the glottal areas are

given by

a1;2ðtÞ ¼ L½2x0 þ xrðt6sÞ þ x‘ðt6sÞ�; (3)

where L is the vocal fold length, x0 is the half glottal width

at rest (prephonatory position), and s is the time delay for

the surface wave to travel half the glottal height T.

Assuming s is small enough, the approximation

xðt6sÞ � xðtÞ6s _xðtÞ may be used, which produces

Pg ¼ 2sPs
_xr þ _x‘

2x0 þ xr þ x‘

� �
; (4)

and reduces the model to an ordinary differential equation.

The symmetric case, with xr ¼ x‘, has been thoroughly

analyzed in previous works under a variety of configurations

(e.g., Lucero et al., 2011), and it has been found to provide a

good characterization of experimental data from both human

subjects (Lucero et al., 2012a) and mechanical replicas of

the vocal folds (Lucero et al., 2012b).

The model may be further simplified by approximating

Pg by its linearization around xr;‘ ¼ 0, _xr;‘ ¼ 0, which

produces

M€xr þ B 1þ gx2
r

� �
_xr þ Kxr ¼

sPs

x0

_xr þ _x‘ð Þ: (5)

Finally, letting b ¼ B=
ffiffiffiffiffiffiffiffi
KM
p

, a ¼ sPs=ðx0

ffiffiffiffiffiffiffiffi
MK
p

Þ, and

applying the substitutions t! ð
ffiffiffiffiffiffiffiffiffiffi
M=K

p
Þt, xr;‘ !

ffiffiffi
g
p

xr;‘,

yields

€xr þ bð1þ x2
r Þ _xr þ xr ¼ að _xr þ _x‘Þ: (6)

It might seem that the linear approximation of the

glottal pressure would introduce an extreme simplification

of the oscillatory dynamics. However, we claim that Eq.

(6) is an elegant and convenient representation of the vocal

oscillator for the present study, and this for a number of

reasons. First, it may be put into the form of a van der Pol

oscillator

€xr � bðk� x2
r Þ _xr þ xr ¼ að _x‘ � _xrÞ; (7)

where k ¼ ð2a� bÞ=b. This form allows for the application

of the extensive available theory on van der Pol oscillators

(e.g., Grimshaw, 1991) to the study of phonation. For

instance, in the symmetrical case of xr ¼ x‘, the theory tells

us that a supercritical Hopf bifurcation occurs at k ¼ 0,

which implies a ¼ b=2 and therefore Ps ¼ x0B=ð2sÞ. This

critical value of Ps is known as the phonation threshold pres-

sure (Titze, 1992). The van der Pol characterization has also

been extensively used in the context of syrinx modeling for

birdsong production (Laje et al., 2002; Arneodo and

Mindlin, 2009), and it has been found to reproduce the main

dynamic features of the oscillation with no significant differ-

ences over the original Eq. (2) for Pg.
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To have a reference for possible values of parameters a and

b, let us consider a normal voice in a male adult configuration,

with M¼ 0.5 g/cm2, B¼ 100 dyne s/cm3, K¼ 200 000 dyne/

cm3, s ¼ 1 ms, x0 ¼ 0:1 cm, and Ps ¼ 800 Pa (Titze, 1988).

Those values produce b ¼ 0:32 and a ¼ 0:25. Note that b is

small ðb < 1Þ, therefore the oscillator does not behave as a

relaxation oscillator. Instead, it is a quasi-linear oscillator with a

nearly harmonic solution.

In Eq. (7), the oscillation is born from a simple super-

critical Hopf bifurcation at oscillation onset. A number of

experiments have shown two different values for the oscilla-

tion threshold pressure, one for onset and a lower for offset,

in a classical hysteresis phenomenon (e.g., Plant et al., 2004;

Ruty et al., 2007). In its simplest model, the generation of

the hysteresis phenomenon requires a Hopf bifurcation of

the subcritical type, in combination with a saddle-node bifur-

cation between limit cycles (Lucero, 1999), and therefore it

cannot be reproduced by the above van der Pol model.

However, those two bifurcations and the consequent oscilla-

tion hysteresis may be incorporated by simply extending the

nonlinear damping term to higher degree polynomials

(Ananthkrishnan et al., 1998).

Introducing a similar equation for the left vocal fold

(as in Sec. II B), we obtain a system of coupled van der

Pol oscillators. Coupling is provided by the term at the

right side, which represents the action of the airflow.

Again, coupled van der Pol oscillators have been exten-

sively studied (e.g., Kuznetsov et al., 2007, Kuznetsov

et al., 2009; Rand and Holmes, 1980; Storti and Rand,

1982), and the theory may be applied to phonation in the

presence of vocal asymmetries. In fact, in a recent work

(Lucero and Schoentgen, 2013), this modeling strategy was

used to obtain regions of phase-locked (1:1 relation) and

unlocked oscillation of the coupled system. The results

were preliminary in nature and did not consider the full set

of oscillatory solutions. Further, the regions were deter-

mined in terms of parameters a and l ¼ bk in Eq. (7).

Note that both parameters include subglottal pressure Ps,

which complicates the interpretation of the results. Here,

the analysis is performed in more detail for the whole set

of solutions and expanded with numerical simulations to

consider other synchronization regimes.

The linear approximation of Pg is also convenient for

voice synthesis. It has been argued that, for sound synthesis

applications, a vocal fold model must produce smooth varia-

tions of the glottal flow. Non-smoothness increases the con-

tent of higher harmonics, which results in unnatural timbres.

For example, the popular two-mass model and related

lumped representations produce non-smooth variations of

the flow at glottal closure and are prone to numerical insta-

bilities when the glottal area is close to zero. Although some

techniques have been proposed to solve those issues

(Birkholz et al., 2011; Erath et al., 2013; Pelorson et al.,
1994), the present model offers a much simpler solution:

Division by a small glottal area [when 2x0 þ xr þ x‘ is close

to zero, in Eq. (4)] has been eliminated. A smooth glottal

closure may be introduced by truncating the glottal area

when it is zero (i.e., when 2x0 þ xr þ x‘ ¼ 0) with a smooth

waveshaper (Lucero et al., 2013; Schoentgen and Lucero,

2013). Synthetic voices produced with this simple model

have been assessed by trained clinicians as having a high

degree of naturalness.

B. Asymmetric model

We consider first an asymmetry between the normalized

stiffness coefficients of the vocal folds, as follows:

€xr þ bð1þ x2
r Þ _xr þ xr � ðD=2Þxr ¼ að _xr þ _x‘Þ; (8)

€x‘ þ bð1þ x2
‘ Þ _x‘ þ x‘ þ ðD=2Þx‘ ¼ að _xr þ _x‘Þ; (9)

where jDj < 2 is an asymmetry coefficient. Previous work

on asymmetric vocal folds has considered a Q asymmetry

quotient which relates the natural frequencies of the left and

right vocal folds (e.g., Steinecke and Herzel, 1995). Our

modeling simplifies the subsequent analysis because it keeps

a constant oscillation frequency independently of the degree

of asymmetry. The results may be later expressed in terms of

Q by using the relation Q2 ¼ ð1þ D=2Þ=ð1� D=2Þ.
Naturally, several other asymmetric conditions may be intro-

duced by similar ad hoc parameters (e.g., see Kuznetsov

et al., 2009).

The above model assumes that the glottal pressure re-

sultant from the airflow through the glottis acts on the vocal

folds during the whole oscillatory cycle, ignoring any glottal

closure. The intention is to analyze first entrainment regimes

owing to the aerodynamic coupling. The effect of collision

between the vocal folds is considered later in Sec. V B.

III. STABILITY ANALYSIS

A standard stability analysis for the equilibrium position

at xr ¼ 0, x‘ ¼ 0 is applied first. The associated characteris-

tic equation is

s4 þ 2 b� að Þs3 þ 2þ b b� 2að Þ½ �s2

þ 2 b� að Þsþ 1� D2

4
¼ 0; (10)

where s is a complex variable. This equation has the form

s4 þ a3s3 þ a2s2 þ a1sþ a0 ¼ 0. When a ¼ 0, application

of the Routh-Hurwitz criterion shows that all roots have neg-

ative real parts and the system is therefore stable. It becomes

unstable when one or more roots cross the imaginary axis

from left to right. Since a0 > 0 (recall jDj < 2), the roots

may cross the imaginary axis only in pairs of complex conju-

gates. Letting s ¼ 6ix and separating real and imaginary

parts, we obtain

x4 � ½2þ bðb� 2aÞ�x2 þ 1� D2=4 ¼ 0; (11)

ðb� aÞðx2 � 1Þ ¼ 0: (12)

Solutions to Eq. (12) are b ¼ a and x ¼ 1. Substituting x
¼ 1 in Eq. (11) produces

a ¼ b
2
þ D2

8b
: (13)
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At this condition, a pair of complex conjugate roots cross the

imaginary axis.

Next, substituting b ¼ a and solving for x2,

x2 ¼ 1� b2

2

� �
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

2

� �2

� 1þ D2

4

s
; (14)

which has two real solutions for b �
ffiffiffi
2
p

and

jDj > 2b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=4

q
. Under this condition, two pairs of com-

plex conjugate roots cross the imaginary axis.

Substituting b ¼ a in Eq. (13), we obtain the point at

which both conditions coincide: jDj ¼ 2b.

The results are summarized in Fig. 1. In the region

below curve AB and line BD, all roots of the characteristic

equation have negative real parts. Hence, the equilibrium

position is stable, and there are no oscillatory solutions. On

curve ABC, a pair of roots of the characteristic equation is

purely imaginary and a Hopf bifurcation occurs, which pro-

duces a limit cycle. On line BD, the four roots are purely

imaginary with values 6ix1 and 6ix2, where x1;2 are

given by the real solutions of Eq. (14), and a double Hopf

bifurcation occurs (Guckenheimer and Holmes, 1983;

Guckenheimer and Kuznetsov, 2008). On this line, an invari-

ant two-dimensional torus with periodic or quasi-periodic

orbits is produced. The Hopf bifurcation at curve BC is the

upper limit of the toroidal region.

IV. PERTURBATION ANALYSIS

A. Averaged equations

We seek now approximations to the oscillatory solutions

of Eqs. (8) and (9) by applying an averaging technique

(Strogatz, 1994). When a¼ 0 and b ¼ 0, the system reduces

to a pair of uncoupled harmonic oscillators, with the

solutions

xr ¼ rr cosðt� hrÞ; x‘ ¼ r‘ cosðt� h‘Þ (15)

and derivatives

_xr ¼ �rr sinðt� hrÞ; _x‘ ¼ �r‘ sinðt� h‘Þ; (16)

where rr;‘ and hr;‘ are constants. For small values of a and b,

it is reasonable to expect solutions of a similar form, but

where rr;‘ and hr;‘ are slowly varying functions of time.

Therefore, we propose the solution

xr ¼ rrðtÞ cos½t� hrðtÞ�; (17)

x‘ ¼ r‘ðtÞ cos½t� h‘ðtÞ�: (18)

For the derivatives of Eqs. (17) and (18) to have the same

form as in Eq. (16), the condition

_rr cosðt� hrÞ þ rr
_h1 sinðt� hrÞ ¼ 0; (19)

_r‘ cosðt� h‘Þ þ r‘ _h2 sinðt� h‘Þ ¼ 0; (20)

must hold.

Replacing Eqs. (17) and (18) in Eqs. (8) and (9), and

using Eqs. (19) and (20) to solve for _rr;‘ and _hr;‘, produces

expressions of the form

2 _rr ¼ �sinðt� hrÞF½rr cosðt� hrÞ; rr sinðt� hrÞ; r‘ sinðt� h‘Þ�; (21)

2rr
_hr ¼ cosðt� hrÞF½rr cosðt� hrÞ; rr sinðt� hrÞ; r‘ sinðt� h‘Þ�; (22)

and similarly for r‘ and h‘. Since r‘ and h‘ are slowly varying parameters, they may be approximated by their averages over

one cycle of the oscillation, which produces

2 _rr ¼ �
1

2p

ð2p

0

sin t� hrð ÞF rr cos t� hrð Þ; rr sin t� hrð Þ; r‘ sin t� h‘ð Þ
� �

dt; (23)

2rr
_hr ¼

1

2p

ð2p

0

cos t� hrð ÞF rr cos t� hrð Þ; rr sin t� hrð Þ; r‘ sin t� h‘ð Þ
� �

dt: (24)

Computing the integrals and letting / ¼ hr � h‘ be the phase difference between the right and left oscillators, we obtain

the system of equations

FIG. 1. Results of the stability analysis. The number of complex roots of the

characteristic equation with positive real parts is indicated. Curve ABC:

Hopf bifurcation. Line BD: Double Hopf bifurcation.
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2 _rr ¼ �brrð1þ r2
r =4Þ þ arr þ ar‘ cos /; (25)

2 _r‘ ¼ �br‘ð1þ r2
‘ =4Þ þ ar‘ þ arr cos /; (26)

2 _/ ¼ D� aðrr=r‘ þ r‘=rr Þ sinð/Þ: (27)

Fixed points of Eqs. (25)–(27) correspond to stationary

oscillatory solutions of Eqs. (8) and (9). Setting all deriva-

tives to zero, replacing Eqs. (25) and (26) by their sum and

difference, and assuming rr þ r‘ 6¼ 0 produces

�b� b
4

r2
r � rrr‘ þ r2

‘

� �
þ aþ a cos / ¼ 0; (28)

rr � r‘ð Þ �b� b
4

r2
r þ rrr‘ þ r2

‘

� �
þ a� a cos /

	 

¼ 0;

(29)

D� aðrr=r‘ þ r‘=rrÞ sin / ¼ 0: (30)

B. Oscillatory solutions

Equation (29) implies rr ¼ r‘ or

�b� b
4

r2
r þ rrr‘ þ r2

‘

� �
þ a� a cos / ¼ 0: (31)

Letting first R ¼ rr ¼ r‘, from Eq. (30) we obtain

sin / ¼ D
2a
; (32)

which requires jDj � 2a. For given values of D and a, the

above equation has two solutions for /: If D � 0, one solu-

tion is in ½0; p=2� and the other in ½p=2; p�; for D < 0 the val-

ues of / are negative. Further, from Eq. (28),

�bð1þ R2=4Þ þ að1þ cos /Þ ¼ 0; (33)

which requires

að1þ cos /Þ � b: (34)

Let us examine the critical condition að1þ cos /Þ ¼ b.

Using Eq. (32) to eliminate /, we arrive at

b� að Þ2 þ D2

4
¼ a2; (35)

which produces the same Hopf bifurcation curve given by

Eq. (13).

The characteristic equation associated with Eqs.

(25)–(27) was computed with the aid of a computer algebra

system. For R ¼ rr ¼ r‘, the equation is

s� 2a cos /ð Þ

� �b 1þ 3

4
R2

� �
þ a� s

	 
2

� a cos /ð Þ2
( )

¼ 0;

(36)

and using Eq. (33) we obtain the roots s1 ¼ �2a cos /,

s2 ¼ 2b� 2a� 2a cos /, and s3 ¼ s1 þ s2 (the calculation is

straightforward and omitted for brevity). From Eq. (34),

s2 < 0. If / 2 ð�p=2; p=2Þ, then s1 < 0 and so s3 < 0; there-

fore, the solution is stable. If / 2 ð�p;�p=2Þ [ ðp=2; pÞ, then

s1 > 0 and therefore the solution is unstable. Both the stable

and unstable solutions become coincident at a saddle-node

bifurcation when a ¼ jDj=2 and consequently / ¼ 6p=2. At

that bifurcation, the solutions cancel each other.

Equation (13) [equivalent to Eq. (35)] and the condition

a ¼ jDj=2 define the regions of existence of oscillatory solu-

tions in the a ¼ jDj plane, illustrated in Fig. 2.

Next, assume rr 6¼ r‘ in Eq. (29), so that Eq. (31) holds.

Adding and subtracting Eqs. (28) and (31), we obtain

r2
r þ r2

‘ ¼
4 a� bð Þ

b
(37)

and

a cos / ¼ � brrr‘
4

: (38)

From Eq. (30),

a sin / ¼ � Drrr‘
r2

r þ r2
‘

: (39)

Any solutions produced by the above equations (it may

be shown that up to two solutions may exist) are unstable.

The characteristic equation has the form (again, the calcula-

tion is straightforward and is omitted for brevity)

s3 þ Asþ B ¼ 0; (40)

where A, B are constants. A simple application of the Routh-

Hurwitz criterion shows that the equation has one real posi-

tive root or two complex roots with positive real parts (note

that the coefficient for s2 is missing), and therefore all solu-

tions are unstable. These solutions will be not analyzed fur-

ther since they do not have any relevant effect on the

dynamics of phase entrainment.

The results of Secs. III–IV B may be combined and

summed up in the bifurcation diagram of Fig. 3. Curve ABC

FIG. 2. Regions of existence of oscillatory solutions (limit cycles). When

two limit cycles co-exist, one is stable and the other unstable. In case of a

unique limit cycle, it is a stable one.
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is the Hopf bifurcation found in Sec. III. It has both super-

critical and subcritical portions, to the left and right of

point B, respectively. When the curve is crossed in the

upward direction, the equilibrium position becomes unsta-

ble and it expels a stable limit cycle, in the supercritical

portion, or it absorbs an unstable limit cycle, in the sub-

critical portion. To the right of point B, there is a region

where a stable and an unstable limit cycle co-exist. Note

that the stable limit cycle is not produced at the Hopf

bifurcation, but at curve BE in a saddle-node bifurcation

for limit cycles.

The region of 1:1 phase entrainment is therefore the

region of existence of the stable limit cycle. It represents a

stable oscillation where both the right and left vocal folds

oscillate with the same amplitude R. The amplitude R is

given by Eq. (33), and the phase difference / between the

vocal folds is given by Eq. (32), with j/j < p=2. Due to our

modeling strategy, the oscillation frequency is x¼ 1 for any

value of D. The threshold for this regime (ABE in Fig. 3)

increases with jDj, meaning that a larger subglottal pressure

a is required at larger asymmetries in order to achieve syn-

chronization. Similar shapes for the 1:1 entrainment region

are observed in the periodically driven van der Pol oscillator

(Mettin et al., 1993) and in other systems of coupled oscilla-

tors (Ulrichs et al., 2009).

C. Phase dynamics

It is instructive to explore the dynamics of the oscilla-

tion also in terms of a phase equation. Because both oscilla-

tors have the same amplitude R, the phase Eq. (27) may be

written as

_/ ¼ D
2
� a sin /; (41)

which is classical equation of phase dynamics by Adler

(1946).

Equilibrium points (fixed points) for the phase are

obtained by setting _/ ¼ 0, which leads to Eq. (32). As previ-

ously found, there is a stable fixed point in ð�p=2; p=2Þ and

an unstable fixed point outside that interval. Both points

coincide in a saddle-node bifurcation at / ¼ 6p=2 when

a ¼ jDj=2.

When D ¼ 0, the phase difference between right and

left folds (at the stable solution) is / ¼ 0. When D increases

/ also increases; i.e., when the right vocal fold becomes

more relaxed (less stiff) than the left vocal fold, the oscilla-

tion of the right fold becomes delayed in relation to the left

one. This result agrees with experiments on physical models

of the larynx (Zhang et al., 2013).

It is interesting to note that the range of variation of

the phase difference / between the vocal folds follows the

so-called “180� rule” of circadian clocks in biology. The

rule states that circadian rhythms synchronize to an external

timing agent with a phase difference in a 180� range

(Granada et al., 2013), independently of the strength of the

external agent. In terms of the above phase model, the rule

implies that the sensitivity of the phase difference / to the

frequency asymmetry D depends on the magnitude of the

normalized subglottal pressure (or coupling coefficient) a.

The higher the subglottal pressure, the smaller the sensitiv-

ity; i.e., at a higher subglottal pressure, a mismatch between

the natural frequencies of the vocal folds produces a smaller

phase difference. At the same time, the range of frequency

mismatch over which the vocal folds may synchronize is

larger.

The phase model has already been applied to voice pro-

duction studies for assessing the effect of vocal fold asym-

metries on vocal frequency jitter (Schoentgen, 2001).

V. NUMERICAL RESULTS

In Secs. V A–V C, the oscillatory dynamics is further

explored through numerical techniques. The equations of the

model were first solved in a 200� 200 grid spanning the rec-

tangular region 0 � D � 2, 0 � a � 1:5, and for a time span

of 2000 units of normalized time. This time interval was

long enough to reach stationarity. The initial transient was

removed, and phase entrainment regimes were detected by

looking at intersections of trajectories for the right and left

oscillators with Poincar�e sections in a given direction

(Kuznetsov et al., 2007). Here, we used planes at _xr ¼ 0 and

_x‘ ¼ 0 for each oscillator, in the direction of decreasing _xr

and _x‘, respectively. The entrainment regime was then

defined by the relation n : m, where n and m are the number

of intersections of the right and left trajectories, respectively,

with their associated Poincar�e sections. Finally, regions of

entrainment regimes are presented in the Da plane by coding

the n : m relation in gray tones.

A. Effect of stiffness asymmetry

Figure 4(a) shows entrainment regions computed from

Eqs. (8) and (9). Predominant regimes are indicated in the

graph, and the dark area corresponds to other phase entrain-

ments or toroidal regimes. The numerical results perfectly

match the regions found in Fig. 3. Within the n : m regimes

(other than 1:1), the most predominant is 3:3, possibly due to

presence of a cubic nonlinearity in the differential equations

(i.e., x2
r _xr and x2

‘ _x‘). In general, the structure of entrainment

FIG. 3. Bifurcation diagram and regions of oscillation. Curve ABC: Hopf

bifurcation, given by Eq. (13). In portion AB the bifurcation is supercritical,

and in BC it is subcritical. Curve BE: a ¼ jDj=2, saddle-node bifurcation

between limit cycles. Line BD: a ¼ b, double Hopf bifurcation.
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regimes is similar to the case of the periodically driven van

der Pol oscillator (Mettin et al., 1993).

Figure 4(b) shows solutions for the 1:1 region (top) and

3:3 region (bottom). The right vocal fold has a lower stiff-

ness than the left one, and its motion is therefore delayed in

time. In the case of the 1:1 entrainment, both folds oscillate

with the same amplitude. In the 3:3 regime, both folds have

three cycles in one meta-cycle.

B. Effect of collision between the vocal folds

The next figures present results when collision between

the opposite vocal folds is added to the model. The collision,

and consequent glottal closure, may be simply modeled by

letting the glottal pressure in Eq. (2) be

Pg ¼
Psða1 � a2Þ=a1 if a1 > 0 and a2 > 0;
Pc if a1 � 0 or a2 � 0;

�
(42)

where Pc is the pressure on the vocal folds during glottal clo-

sure. This new definition of the glottal pressure gives the fol-

lowing expression for the right-hand side of Eqs. (8) and (9),

að _xr þ _x‘Þ if 2x0 þ xr þ x‘ > 0;
ac if 2x0 þ xr þ x‘ � 0;

�
(43)

where x0 is the normalized value of the glottal half-width

and ac is a normalized pressure for glottal closure. Thus, dur-

ing the oscillatory cycle, the glottal pressure assumes a

different form (a constant value) when the vocal folds come

in contact, which introduces an additional coupling between

them.

For simplicity, we adopted first ac ¼ 0. An appropriate

value of x0 was then determined as follows. A normal oscil-

lation was simulated with symmetric folds ðD ¼ 0Þ and a

normalized subglottal pressure a equal to twice the threshold

value (soft phonation, Titze, 1992), i.e., a ¼ 2b. Then, x0

was selected so as to produce an open quotient of 0.6 (Titze,

1992), which resulted in x0 ¼ 1.

Figure 5(a) shows the resultant entrainment regions. The

collision introduces a distortion to the toroidal or n : m
region at large asymmetry, and an expanded 2:2 entrainment

region. At low and mid asymmetries, on the other hand, no

modifications are observed.

Figure 5(b) shows the resultant glottal width for the

same parameters as in Fig. 4(b). The top plot corresponds to

the 1:1 region, and it shows a train of pulses of constant am-

plitude with an open quotient of 0.5. The bottom plot corre-

sponds to the 3:3 region; in this case, three glottal pulses

occur per glottal meta-cycle.

A larger effect on the vocal fold entrainment is obtained

if stronger coupling forces at collision are assumed. Figure 6

shows results when the normalized pressure at glottal closure

is increased to ac ¼ 20 while keeping the same value of x0.

The larger value of ac causes a shorter glottal closure,

with an open quotient of 0.9 in the symmetrical case.

Nevertheless, larger modifications of the entrainment regions

are observed. The 1:1 region has expanded to mid-sized

FIG. 5. (a) Entrainment regimes when adding a vocal fold collision model

as in Eq. (43), with x0 ¼ 1, ac ¼ 0, and b ¼ 0:32. (b) Glottal width w
¼ maxð2x0 þ xr þ x‘; 0Þ corresponding to points A (top) and B (bottom) in

plot (a).

FIG. 4. (a) Entrainment regimes for Eqs. (8) and (9), with b ¼ 0:32. (b)

Solutions corresponding to points A (top) and B (bottom) in plot (a). In (b),

the black curves correspond to the right vocal fold and the gray curves corre-

spond to the left one.
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asymmetries, with the consequence that a lower subglottal

pressure a is required to achieve 1:1 entrainment. In addi-

tion, the 2:2 region occupies much of the rest of the oscilla-

tion region.

C. Effect of damping asymmetry

Finally, we consider the recent finding of a different

entrainment region discussed in Sec. I: In a physical model

of the vocal folds and at large asymmetry, both folds oscil-

late in 1:1 entrainment but the lax fold dominates with a

large amplitude. The frequency is determined by the lax

fold, and the stiff fold follows the lax one with a smaller am-

plitude (Zhang and Luu, 2012; Zhang et al., 2013).

A similar phenomenon has been detected in coupled van

der Pol oscillators, called “broadband synchronization”

(Kuznetsov et al., 2007), and consists of one oscillator driv-

ing a second passive one. This occurs when the damping

coefficients of the oscillators are not identical, e.g.,

€xr þ brð1þ x2
r Þ _xr þ xr � ðD=2Þxr ¼ að _xr þ _x‘Þ; (44)

€x‘ þ b‘ð1þ x2
‘Þ _x‘ þ x‘ þ ðD=2Þx‘ ¼ að _xr þ _x‘Þ; (45)

with br < b‘. Thus, the subglottal pressure (a) may be strong

enough to cause self-excited oscillations of the right oscilla-

tor, which drives but is not able to overcome the damping of

the left oscillator, which behaves as a passive damped

system.

As an example, this phenomenon was simulated by let-

ting b‘ ¼ 2br and all other parameters as in Sec. V A with

the results shown in Fig. 7. A substantial modification in the

entrainment regions is observed: The region of 1:1 entrain-

ment has expanded to low values of a covering the full range

of D.

Figure 7(b) shows the solution in the 1:1 region at the

lower right of the diagram in Fig. 7(a). Note that the left

vocal fold has much smaller amplitude than the right one.

Comparing to the plots in Fig. 4(b) we also see that the oscil-

lation frequency is lower. The period is T ¼ 15:13, which

implies an angular frequency of x ¼ 2p=T ¼ 0:41. This

value is close to the natural frequency of the right (softer)

oscillator x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D=2

p
¼ 0:40. These characteristics

match perfectly the findings by Zhang and Luu (2012). On

the other hand, the phase difference is large (about 90�), but

it is not the anti-phase found in their experiments.

Let us note that in their work, Zhang and Luu (2012)

adopted a continuum model of the vocal folds to simulate

the observed regimes. An oscillation with a dominant lax

fold was obtained by setting a large stiffness asymmetry

between the right and left folds. However, the model

assumed a tissue damping proportional to the mass and to

the natural frequency. In that case, a stiffness asymmetry

implies a damping asymmetry (for equal masses of the right

and left folds) in which the lax fold has a lower damping.

Therefore, our modeling above agrees with approach of

Zhang and Luu (2012).

On the other hand, the continuum model has also been

used to characterize the onset of the vocal fold oscillation in

terms of the synchronization of different oscillation eigen-

modes (Zhang et al., 2007). Thus, a stiffness asymmetry

could result in different oscillation threshold values of the

subglottal pressure for the right and left vocal folds, when

considered separately. It might be possible, therefore, to

reproduce the above phenomenon by means of a stiffness

asymmetry alone.

VI. EXPERIMENTAL VALIDATION

Experimental support may be given to the above theo-

retical results by using measurements from a mechanical

replica of the vocal folds. The replica has been described in

detail elsewhere (Ruty et al., 2007; Pelorson and Laval,

2012; Pelorson et al., 2013).

Briefly, it consists of two parallel latex sleeves filled with

water under pressure and supported by a metallic structure.

FIG. 7. (a) Entrainment regimes for Eqs. (44) and (45), with br ¼ 0:32,

bl ¼ 0:64. (b) Solutions corresponding to point A in plot (a). In (b), the

black curve corresponds to the right vocal fold and the gray curve corre-

sponds to the left one.

FIG. 6. Entrainment regimes when adding vocal fold collision modeled as

in Eq. (43), with x0 ¼ 1, ac ¼ 20, and b ¼ 0:32.

J. Acoust. Soc. Am., Vol. 137, No. 4, April 2015 Lucero et al.: Self-entrainment of the vocal folds 2043



The latex sleeves represent the vocal folds in a 3:1 scale. Air

from a pressure reservoir is blown through a third latex sleeve,

representing the glottal passage, situated in-between the two

vocal fold sleeves and perpendicular to them. Given enough

air pressure, an oscillation of the sleeves may be excited,

reproducing the behavior of the human vocal folds during pho-

nation. A pressure sensor (XCS-093, Kulite Semiconductor

Products Inc., Leonia, NJ) measures the air pressure immedi-

ately upstream the sleeves. Calibration of the pressure sensor

was made against a water meter with an accuracy of 65 Pa.

Measures of oscillation threshold pressure were

obtained by increasing the air pressure upstream of the rep-

lica from zero until an oscillation of the sleeves was

detected. The time instant of oscillation onset was deter-

mined by spectral analysis of the upstream pressure signal,

and the mean upstream pressure and oscillation frequency at

that instant were computed (for details on the measurement

process, see Lucero et al., 2012b). The process was repeated

for various values of internal water pressure of one of the

vocal fold sleeves, while keeping constant the water pressure

in the other sleeve.

The final data set consisted of 23 triplets ðS; fon;PonÞ
where S is the ratio of water pressures inside the sleeves, fon

is the fundamental frequency of the oscillation at onset, and

Pon is the upstream oscillation threshold pressure. In addi-

tion, the mechanical response of the replica was measured

by means of a shaker whose probe is equipped with an accel-

erometer in conjunction with a laser vibrometer. Thus, the

natural frequencies of the vocal fold sleeves were deter-

mined for various water pressure configurations. The first

(lowest) natural frequency was closer to the oscillation fre-

quency than the others, and was therefore selected for the

analysis below. Repeated measurements showed less than

1% of variability for the first natural frequency, indicating a

good level of measurement repeatability. Figure 8 shows the

measured data.

In Eqs. (8) and (9), the natural angular frequencies of

the oscillators are given by x2
r;‘ ¼ 17D=2. Therefore, the ra-

tio of natural frequencies is Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ D=2Þ=ð1� D=2Þ

p
.

Solving for D we obtain

D ¼ 2
Q2 � 1

Q2 þ 1

 !
: (46)

In the case of 1:1 entrainment, the oscillation angular fre-

quency of the coupled system is given by

x2
0 ¼ ðx2

r þ x2
‘Þ=2 ¼ ðx2

r=2Þð1þ Q2Þ. Assuming that the

stiffness of the right oscillator is kept constant, the oscilla-

tion frequency may be expressed as

f0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q2

p
; (47)

where a ¼ x2
r=2.

We may use Eq. (13) to compute the threshold pressure

for small asymmetries. Replacing a and b and solving for

the subglottal pressure, we obtain

Ps ¼ bþ cD2; (48)

where b ¼ Bx0=ð2sÞ and c ¼ x0MK=ð8BsÞ.
Equations (47) and (48) were fitted to the measured data

as follows. The relation Q ¼ f ðSÞ was computed from the

top plot in Fig. 8 by interpolation. Coefficient b in Eq. (48)

was next estimated by interpolation from the middle plot as

the value of Ps for Q ¼ 1, with the result b ¼ 371:3 Pa.

Finally, optimal values of coefficients a ¼ 82:5 Hz and

c ¼ 4 800.7 Pa were determined by applying a standard least

squares procedure. The results of the fit are shown in Fig. 9.

In the case of coefficient c for the onset pressure (bottom

plot), the optimal value was computed by neglecting the five

leftmost data points. Note that the measured data do not

show a symmetric pattern for negative and positive values of

FIG. 8. Measured data as a function of the ratio S of water pressure inside

the latex sleeves representing the vocal folds. Top: First natural frequencies

of the sleeves. The squares represent the sleeve with a constant water pres-

sure, and the circles represent the sleeve with a varying pressure. Middle:

Oscillation frequency at onset. Bottom: Upstream pressure at oscillation

onset.

FIG. 9. Oscillation frequency (top) and upstream pressure (bottom) vs coef-

ficient of asymmetry. Circles: Measured data, curves: Theoretical model.
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D: For negative values, both the oscillation frequency and

the oscillation onset tend to constant values (to the left of the

plots). Therefore, the model fails to provide a good fit in that

region. Outside that region, the model provides a good fit;

the R2 coefficients are 0.79 and 0.77 for the frequency and

the pressure, respectively.

VII. CONCLUSIONS

This article presents a simple theoretical model to char-

acterize entrained oscillations of the right and left vocal

folds in the presence of asymmetries. The simplicity of the

model enables an analytical treatment of the oscillations, and

also a link to other classical models of coupled oscillations

in physiology, such as the van der Pol oscillator and Adler’s

equation of phase dynamics.

The analysis has shown that a stiffness asymmetry

between the left and right vocal folds increases the subglottal

threshold pressure in the 1:1 entrainment region. Within this

region, both vocal folds oscillate with the same amplitude at

a common oscillation frequency equal to the average of the

natural frequencies of the folds, and with the lax fold

delayed in time with regard to the tense fold. At large asym-

metries, a region of toroidal or higher n : m entrainment

regimes appears, with a constant threshold pressure.

The mathematical analysis has only considered the cou-

pling provided by the airflow through the glottis. When colli-

sions between opposite folds during the oscillatory cycle are

introduced, the 1:1 entrainment region is expanded toward a

lower subglottal threshold pressure. Also, the region of toroi-

dal or n:m entrainment regimes is distorted and replaced by

a 2:2 regime.

When an asymmetry in the damping coefficients of the

oscillators is introduced (so that the oscillator with the low-

est damping also has the lowest natural frequency), then a

broadband synchronization phenomenon is observed. This

phenomenon expands the 1:1 regime to low subglottal pres-

sures across the whole stiffness asymmetry range. In the

expanded region, the oscillator with the lowest natural fre-

quency is dominant: It has large amplitude and the oscilla-

tion frequency is close to its natural frequency. The other

oscillator follows the oscillation with a large phase advance

and a very small amplitude.

The theoretical findings match observations of asym-

metrical vocal fold oscillations and data from measurements

on mechanical replicas. Particularly, we have shown that the

model fits data from a latex replica of the vocal folds with

good accuracy, at low asymmetries.

Limitations of the results due to simplifications of the

vocal fold model must also be considered. For example, the

model assumes oscillations with a single degree of freedom

for each fold. Actual motion of the vocal folds includes com-

ponents in three-dimensional directions and may combine

various oscillation eigenmodes (Zhang et al., 2007). The

model is also quasi-linear and assumes a linear elastic restor-

ing force for the tissues as well as a linear approximation of

the glottal pressure. Therefore, it may not be valid for cases

of very large oscillation amplitudes and high subglottal pres-

sures. Finally, the effect of the vocal tract has been

neglected. It has been reported that resonant effects of the

vocal tract may enhance vocal instabilities and reduce

regions of phase entrainment (Mergell and Herzel, 1997).
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