/0685

AMERICAN JSLHR, Yolume 40, 1111 1117, Octobar 1997
SPEECH.LANGUAQGE-
HeARING
ASSOCIATION

On the Registration of Time and
the Patterning of Speech
Movements

‘Jorge C, Lucero
Kevin G. Munhall
Queen’s University
Kingston, Canada

In order to study speech coordination we frequently average kinematic and other
physiological signals. The averages are assumed to be mare representative of the
underlying patterns of production than individual records. In this note we outline
different approaches to averaging and present a new nonlinear normalization
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n speech production research we commonly use waveform averaging

for one of three general purposes: (1) to estimate the latency of a

response to a defined stimulus, (2) to assess the central tendency and
variability in movement trajectories in an experimental condition, and
(3} to infer aspects of the control regime from trajectory shapes. The
most common approach is to compute sample-by-sample averages from
a single line-up event (e.g., ensemble averaging of responses to some
phasic stimulation: Gracco & Abbs, 1985; Kelso, Tuller, Vatikiotis-
Bateson, & Fowler, 1984). We will refer to this approach as un-normal-
ized averaging. A second approach involves defining two line-up points
that span an event. Before averaging, the waveforms are linearly
stretched or compressed to a common length (e.g., Smith, Goffman,
Zelaznik, Ying, & McGillem, 1995). We will refer to this approach as
linearly normalized averaging. A final approach involves defining two
line-up points that span an event and stretching the data in a nonlinear
fashion to a common length {e.g., Ramsay & Silverman, in press; Strik
& Boves, 1991). In this approach, key events are registered by nonlinearly

warping the trajectories. We will refer to this approach as nonlinearly
normalized averaging.

Each of these approaches has advantages and disadvantages. The
major disadvantage of un-normalized averaging is distortion due to varia-
tions in the time domain: the greater the variability in the component
responses, the more likely that the average signal will not resemble the
individual signals much beyond the line-up point. For example, averag-
ing variable speech movement events that occur over more than about
50-100 ms will often result in a representation of the central tendency
that in no way reflects any of the component waveforms. Un-normalized
averaging has the major advantage that physical time is preserved, and
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estimates of the timing relationship between a stimu-
lus and a time-locked response are preserved. Other
advantages include simplicity of processing and simplic-
ity of interpretation of the average signal.

Linearly normalized averaging reduces the effects
of differences in event duration but does not eliminate
distortion due to nonlinear factors. For example, if the
waveforms being averaged vary in duration in a non-
uniform manner (e.g., through the insertion of pauses
in an utterance or different combinations of vowels and
consonants), the resulting normalized signals will re-
tain variability in the timing of landmarks. The result-
ant variation represents a possible combination of fac-
tors, ranging from the phonetic composition of the
speaking material to variations in the control process.
Thus, unless the behavior being studied is linearly
scaled in time, the interpretation of the resulting aver-
age signal is ambiguous. For short stretches of behav-
ior the assumption of linear scaling may be acceptable.
Under these conditions, a computationally simple and

reasonably accurate average can be derived using this
approach.

Nonlinearly normalized averaging overcomes the
problem of variability in the timing of landmarks and
produces an average that can be used to study the un-
derlying spatiotemporal patterning or shape. The pre-
cise definition of shape is in itself a complex issue {(e.g.,
Bookstein, 1991). Here, we simply mean the number and
magnitude of key events (landmarks) in the data, such
as peaks, cycles, and so forth. Distortion is avoided by
aligning those events before averaging and thus mini-
mizing phase differences. Variations in physical time are
removed from the average but are available for exami-

nation in a separate measure derived from the align-
ment process.

Below we will illustrate the three methods of aver-
aging using lip acceleration data, and we will describe
in detail one technigue for nenlinearly normalized av-
eraging. We chose to process the lip acceleration instead
of its displacement, because acceleration is directly re-
lated to the forces acting on the lips and thus is worth
analyzing to study how lip motion is controlled. More-
over, because it has a more complex shape than displace-
ment and velocity, nonlinearly normalized averaging will
be more revealing of the differences between the vari-
ous averaging techniques.

Description of the Data

Data was collected from a male native-speaker of
English with no reported speech disorders, producing
the sentence “Buy Bobby a puppy” in 20 trials at a slow
rate. One trial was lost because of a recording error,
leaving 19 trials for analysis. An OPTOTRAK (Model
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3010, Northern Digital Inc.) system was used to trans-
duce the three dimensional motion of an infrared emit-
ting diode placed on the lower lip in the midline, digi-
tized (12-bit resolution) at a sampling frequency of
200 Hz. The data were corrected for motion of the head
and transformed to a coordinate system in which the
origin is the incisor cusp and the horizontal and pro-
trusion axes lie along the bite surface (Ramsay,
Munhall, Gracco, & Ostry, 1996). For the present analy-

sis, only the vertical component of lower lip motion was
examined.

All further signal processing was done using Matlab.
The raw data were filtered in the forward and backward
directions using & low-pass fifth-order Butterworth fil-
ter with a 15-Hz cutoff frequency. Each record (trisl)
was then differentiated by evaluating the first differ-
ences to compute velocity, and the segment between the
peak velocity of the first and last opening movement
was extracted (see Smith et al,, 1995), For each extracted
record, the acceleration (second difference) was com-
puted for further processing. The data were already rea-
sonably smooth so that a good estimate of the accelera-
tion was obtained. In situations where further smoothing
is required, an algorithm such as spline smoothing with
a roughness penalty in the fourth derivative (Ramsay
et al., 1996} may he used. In the present study, applica-
tion of this algorithm produced no appreciable differ-
ence in the resultant signals. The trials differed in
length; the final number of data points for each accel-
eration record ranged from 348 (1.74 s) to 409 (2.04 s),
with the mean at 368.47 (1.84 s).

Figure 1 shows a typical record (displacement, ve-
locity, and acceleration) as a reference for the following
analysis.

Computation of Averages
Un-Normalized Averaging

Figure 2 (a) shows the acceleration waveforms
aligned at the start of each signal (i.e., the peak veloc-
ity of the first opening movement). The average shown
in Figure 2 (b) was computed simply by taking the
average point by point. Differences in the timing of
landmarks (e.g., peak accelerations) may be analyzed
with this technique. However, the average does not re-
semble the individual waveforms, and it becomes in-

creasingly poorer as time increases because of a cumu-
lative distortion.

Linearly Normalized Averaging

We examined two methods of linearly normalized
averaging: resampling and Fourier series resynthesis
(Smith et al., 1995). We will present the results only
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Figure 1. Typicol data record: {a) displacement {mm}, (b} velocity (mm/s),

and (c) acceleralion {mm/s?)
(time in 3).
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Figure 2, Un-normalized averaging: (a) un-normalized records, (b} average (acceleration in mm/s? and
time in s).
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for the resampling technique, but the findings apply
equally to both methods.!

For the resampling method, all the records were
interpolated using cubic splines to a common length of
500 points, and an artificial time span of 0 to 1 s. was
adopted for the interpolated records. Figure 3 shows the
resampled waveforms and the average based on the
resampled approach. We can see that the average is
closer in shape to the original waveforms, compared with
the previous un-normalized approach. However, we can
also note some significant differences. Consider, for in-
stance, the negative peaks in the individual waveforms,
which have a much lower amplitude in the resultant

tFor the Fourier series resynthesis we followed the procedure of Smith et
al. (19935), As in that work, each record was expanded into a Fourier
series with 10 components. The coefficients for the Fourier series were
obtained using the discrete Fourier transform. For the acceleration data
being analyzed 10 components were too few, and the resulting waveforms
were far too smooth. This problem is trivial and could be corrected by
using more components in the resynthesis, An additional problem of the
Smith et al. technique is more serious. Taking a constant number of
components of the Fouriet series filters the records at different cutoff
frequencies, depending on their duration. For example, using 10
components, 8 record from a fast speaking condition that is 0.7 8 long will
be filtered with a cutoff frequency of 14.0 Hz, whereas a record from a
slow speaking condition that is 1.85 s long would be filtered with a cutoff
frequency of 5.4 Hz. This will be a problem particularly when sentences
produced at different rates are analyzed {as in Smith et al., 1995),

because the degree of smoothing introduced for the variois rates can be
different. :
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average, In both the resampled average, Figure 3 (b),
and the average derived from the Fourier series resyn-
thesis (Smith et al., 1995), the major source of distor-
tion is phase variability. The waveforms in Figure 3 (a)
are slightly out of phase because of nonuniform timing
changes in some trials. Thus, when the records are com-
bined in an average, new “shapes” are created that do
not exist in any of the individual records.

Nonlinearly Normalized Averaging

In Figure 3, the differences between the average and
the individual waveforms are caused by variations in
the timing of landmarks. A better way to obtain an av-
erage that reveals the patterning of events is to distort
the time scale nonlinearly, so that landmarks become
aligned, One simple technique could be to first identify
important landmarks in each of the records—typically
peaks or zero crossings—and then distort the time scale
of each record to align the landmarks. This is a piece-
wise linear technique, because the time scale is stretched
or compressed linearly between landmarks. However,
this technique has some drawbacks. We must first de-
cide which landmarks are important to align, and some
of the selected landmarks may be missing in some of
the curves. These problems can be overcome by defin-
ing a suitable fitting criterion for the alignment and by
distorting the time scale nonlinearly so as to optimize

Figure 3. Linearly normalized averaging using spline interpolation: {a) interpolated records, [b} average

(acceleration in mm/s?).
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that criterion. We describe here a new algorithm for
nonlinearly normalized averaging that follows this ap-
proach (Ramsay & Silverman, 1997),

First we will develop the algorithm in the general
case, and then we will apply it to the lip movement data.
Let us call the set of data records for which we want an
average {the acceleration records in our case) x(t), with
i=1,.,N, and N is the number of records, and their
average x(¢). All the records are assumed to have the
same number of data points, from ¢ = 0 to ¢ = 1. For

simplicity, we consider each data record as a continuous
function.

We want to determine a strictly increasing and rea-
sonably smooth transformation of time h(t) (warping
function) for each record x(t), such that each record as
function of the transformed time (registered record)

x'@t) =x[h()] (1)
is close in some measure to the average #(¢). Such warp-

ing functions can be described by the homogeneous dif-
ferential equation

d’h,

e 65
for some suitable function w(¢). Note that a strictly
- monotone function has a nonzero first derivative, and
we may consider the existence of the second derivative
as a requisite for “reasonable smoothness.” Thus, w(¢)
is trivially the relation of the second derivative [curva-
ture of & (#)] to the first derivative [slope of h(t)), that s,
the relative curvature of h(t). It defines h(t), because
the solution of Eq. (2} is

dh,
= w () S50 @)

hi(t) = Co + C, .L‘ [exp ] wiwrdv] du ()

The coefficients C, and C, are selected so that the warp-
ing function satisfies 2,(0) = 0 and A (1) = 1.

The closeness of the registered records to the aver-
age may be evaluated through the measure

1 R 2
Piw) = | [50) - x/@ de @

Thus, the warping functions are evaluated to minimize
Eq. (4). After a set of warping functions has been com-
puted, the average of the registered records x,(f) may
be used in the place of #(¢) to compute a new set of warp-
ing functions, and this process may be iterated until
there is no significant change between two consecutively
caleulated sets of warping functions (or averages).

The optimizing criterion (4) can be extended by in-
cluding a penalty for the roughness of the warping func-
tions, as follows

B w) = Flasw) + A wkodt ®
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Note that a large value of the smoothing parameter A
will result in small values of the curvature of h{t), which
will approach the straight line fiz) = ¢.

In our calculations, first we resampled all the records
to a common length of 500 data points, as in linearly
normalized averaging. Then, we estimated the warping
functions by expanding the function n“w,-(v)du in Eq. (8)
in a linear basis, using the following technique (Ramsay
& Silverman, 1997). We divide the time interval [0, 11
with a set of break points T,,k=0,.., Ksatisfying 0 = 7,
< T <. T = 1. Next, we define the hat function

(=t Wy =) ift e [, 1)
(Terr~ (T4, ~ ) if £ € [1,, T,
0 otherwise

ilt) = (6)

fork =1,...,K(fork = K, @, (£) is not defined in the inter-
val ¢, ¢, + 1]).

. X
wide = Y cadi(f)

I, )y @
where ¢, are coefficients to determine so as to minimize
the optimizing criteria. In our calculations, we used 11
equally spaced breakpoints (K = 10) and integrated Eq.
(3) by a simple trapezoidal rule. The initial values of
coefficients ¢, were set to zero. We used Eq. (5) with A=
0.001 to evaluate the optimal warping functions and it-
erated the calculations until the maximum difference
between two consecutive averages was less than 2% (9
iterations). A sequential quadratic programming method
implemented in Matlab was used for the optimization.
At this point, there was no visual difference between
consecutive averages.

Figure 4 (a and b) show the waveforms for the reg-
istered records and the average, respectively. Major
events in the original waveforms have been aligned, and
the average clearly preserves their shape.

Figure 5 (a) shows the warping functions A (¢), and
(b) shows the difference between the warping functions
and the straight line £¢) = ¢, that is, the curves show
how much the transformed time departs from the nor-
malized (resampled) time. They describe the differences
between the timings of the unregistered waveforms and
the computed average. Note that they allow us to ana-
lyze separately variability in the timing of events and
variability in their magnitude. For instance, following
the same approach as Smith et al. (1995), we may com-
pute the standard deviation across the registered records
at each data point and use their sum as an index of
magnitude variability. This calculation may be applied
to the warping functions, cbtaining an index of phasing
variability. Timing variability may be assessed sepa-
rately by examining changes in the duration of the un-
normalized records.
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Figure 4. Nonlinearly normalized averaging: (a) registered records, {b) average |acceleration in mm/s?).
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Figure 5. {a) Warping functions h{f} for the re

gistered records in Figure 4 (a); (b) difference between the
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A similar approach has been used previously by
Strik and Boves (1991) to average various physiologi-
cal waveforms related to speech, using a dynamic pro-
gramming algorithm to estimate the optimal warping
functions. Although the basic idea is the same, their
algorithm results in nondifferentiable warping func-
tions and requires users to select one of the records as
a reference for the registration (e.g., the record with

median length, if available) instead of working directly
with the average.

Discussion

Addressing issues in the neural control of speech
often requires substantial inference because the sen-
sorimotor processes that generate the movements and
- associated muscular actions are unsbservable. An im-
portant adjunct to experimental design and improved
imaging technologies is the use of powerful analytical
techniques to uncover important aspects of the speech
motor control process. We have presented an approach
to data visualization that provides a clear advantage
over simple movement averaging and linear normaliza-
tion. The rationale is that if sequential movements re-
flect a patterning process the only way to understand
the process and identify the pattern is to faithfully re-
construct the pattern from the observations. Nonlinearly
normalized averaging preserves the shape of movement
patterns while retaining the option to investigate vari-
ability in their production. Variations in absolute time
can be easily obtained using simple and standard mea-
sures, while nonlinearities in relative time are repre-
sented in the warping function. Note also that it is easy
to modify the present technique using optimizing crite-
ria other than Eq. (5), such as adding a term for rough-
ness penalty if some degree of sthoothing is desired or
using derivatives (or weighted combinations of them) in
the first integral if registration at different levels is de-
sired (Ramsay & Silverman, in press),

Although the nonlinearly normalized averaging
seems well suited to the study of the shape of trajecto-
ries, it has limitations. This technique tends to align
the landmarks with larger magnitude over the smaller
ones. Fortunately, the larger landmarks are usually the
most important ones, but this might not necessarily al-
ways be so. Also, nonlinearly normalized averaging im-
plicitly assumes that the individual waveforms have
similar shape. If large differences in shape are present,
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for example, different number of major cycles, then the
registration might not work properly. Finally, the choice
of what method to use to average physiological data ob-
viously depends on the purpose of the research. How-
ever, any form of normalization sacrifices the represen-

tation of physical time in order to sharpen the
visualization of the patterns.
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