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The dynamics of the large-amplitude oscillation of the vocal folds is analyzed using the two-mass 
model. First, the equilibrium positions are determined in the ease of a rectangular prephonatory 
glottis, and the existence of two equilibrium positions besides the rest position is shown. Their 
stability is examined and a bifurcation diagram is derived with a normalized subglottal pressure 
and a coupling coefficient as control parameters. Phase plane plots are shown to illustrate the 
results. The eases of convergent and divergent prephonatory glottis are then briefly considered. 
The main results are finally discussed relative to previous analytical works; it is shown that they 
disprove the previous oscillation theory based on the existence of a glottal negative differential 
resistance. 

PACS numbers: 43.70.Aj, 43.70.Bk 

INTRODUCTION 

The two-mass model of the vocal folds (Ishizaka and 
Matsudaira, 1972; Ishizaka and Flanagan, 1972) has been 
used in the past years to study the vocal fold oscillation in 
the production of voice. The capability of this well-known 
model to reproduce the oscillation in detail has been sue- 
cessfully demonstrated, and it has been widely used as a 
glottal source for speech synthesis (Ishizaka and Flanagan, 
1972, 1977; Ishizaka and Isshiki, 1976; Koizumi etaL, 
1987; Miller et al., 1988). 

A number of analytical treatments of this model have 
been presented, intending to explain its basic dynamics and 
to build a theory of the vocal fold oscillation (Ishizaka and 
Matsudaira, 1972; Ishizaka, 1981; Ishizaka etal., 1987). 
However, because of the complexity of the equations, the 
analyses have been restricted to small-amplitude oscilla- 
tions around the rest position of the vocal folds. In this 
approach, the equations of motion are first linearized at the 
rest position, whose instability is then studied through the 
Routh-Hurwitz criterion or similar techniques. The con- 
ditions of instability thus obtained have been considered as 
the parameters for the generation of the oscillation, or 
threshold conditions. 

According to these analyses, the oscillation dynamics 
could be described through a Hopf bifurcation: A stable 
equilibrium position (the rest position) becomes unstable 
at a certain value of a parameter such as the subglottal 
pressure, and at the same time a stable limit cycle is gen- 
erated ((3u•kenhcimcr and Holmes, 1983). It ha• been 

shown that at a threshold value of the subglottal pressure, 
two complex conjugate roots of the corresponding charac- 
teristic equation cross the imaginary axis with their real 
parts becoming positive (Ishizaka et al., 1987}, which in- 
dicates the existence of this bffurcation. 

However, using a related plank model and considering 
the general case of large-amplitude oscillations, the exist- 
ence of a second equilibrium position and additional bifur- 
cation phenomena have been found (Lucero and Gotoh, 

1992; Lueero, 1993). Those results imply a more complex 
oscillation dynamics than the single Hopf bifureation de- 
scribed above. 

In this paper, a large-amplitude analysis of the dynam- 
ics of the two-mass model is presented to provide a more 
complete description of its equilibria and bifurcations. This 
study intends to serve as a mathematical basis for future 
studies on the vocal fold oscillation. It is important to note 
here that the suitability of the two-mass model to study the 
vocal fold oscillation has been questioned previously; e.g., 
Titze (1988) has pointed out the difficulty in correlating 
the model parameters to the vocal fold anatomy. However, 
it is a relatively simple model that permits us to study the 
oscillation analytically even without the small-amplitude 
restriction, and including the glottal closure. Keeping its 
limitations in mind, it is adopted for a first analysis of the 
oscillation dynamics. The results of this analysis will be 
discussed and examined relative to previous analytical 
works. 

I. EQUATIONS OF MOTION 

Figure 1 shows a simplified diagram of the two-mass 
model. The equations developed by Ishizaka and Flanagan 
(1972) for this model are adopted with their notation. 
However, the following assumptions are made to simplify 
the analysis. 

(i) The inertia of the glottal air is small and the glottal 
flow ig ec•ngidered quagigteady (Flanagan, 1972). 

(ii) The supraglottal pressure is zero (atmospheric). 
This assumption neglects the vocal tract load and corre- 
sponds to the case of an excised larynx. This is justified 
considering that the vocal fold oscillation also occurs in 
excised larynges, as observed by Baer (1981). 

(iii) The cubic nonlinearity of the elastic restoring 
forces of the tissues is small (the nonlinearity introduced 
by the collision between the opposite vocal folds is main- 
tained). 
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FIG. 1. Diagram of the two-mass model of the vocal folds. rn• and 
lower and upper masses of the vocal fold. r• and r2: viscous damping 
coefficients. k•, ke, and kc: stiffness coefficients. d• and de: thickness of 
masses m• and m 2. x• and x2: displacement of masses m• and m e from 
their rest position (Ishizaka and F!anagan, 1972). 

(iv) The pressure recovery at the glottal outlet is small 
(Titze, 1988). 

(v) The glottal viscous resistances are small. This as- 
sumption has been made in previous analyses (e.g., Ish- 
izaka and Matsudaira, 1972; Titze, 1988), where only 
small-amplitude oscillations around a wide open glottis are 
considered. In that case, the viscous losses are small and 
can be neglected; however, the present analysis does not 
have that amplitude restriction, and a different justification 
is required. This will be done through the numerical solu- 
tion of the equations of motion, showing that the inclusion 
of the viscous resistances does not alter significantly the 
analytical results. 

With the above assumptions, the equations of motion 
become 

{d2x• [dx•\ 
rn,[ d---•j+rl•-}+s,+kc(x,-x2)=F ,, (la) 

{d2x2\ {dx2\ 

where xi (i= 1,2) is the displacement of mass ra i from its 
rest position, r• is its viscous damping coefficient, k½ is the 
coupling stiffness between both masses, F• is the driving 
force acting on mi, $i is the elastic restoring force given by 

Ik/xi, for xi> 
si= [kixi+hi(xi+x•o) ' for xi< -X•o (i= 1,2), (2) 

k i is the stiffness in the open glottis condition, h• is the 
stiffness introduced by the collision between the vocal 
folds, and xo is the half-width of the glottis at mass tn• at 
its rest or prephonatory position. The driving force F i is 
given by 

[lsd•P•f n, for x•>--X•o and x2>--X2o, (3a) F•= [ldt•Ps, otherwise, 
Ilgd•P•, for x• > and F•= I0 ' othcrwlsc, --X•o (3b) 

where di is the thickness of mass rni, 1• is the length of the 
masses, P, is the subglottal pressure, and fe is the function 

f• (xt+x•o) •--(x2+x•o) • 
= (X 1 q_XlO)2_•_l((X2nCX20)2, (4) 

where g = 0.37 (Ishizaka and Flanagan, 1972) is a pressure 
loss factor for the area contraction at the glottal inlet. 

II. EQUILIBRIUM POSITIONS 

A. Open glottis 

The open glottis condition is considered here, i.e., 
x•>-xm and x•>-x20. The equilibrium positions are 
obtained by setting the derivatives to zero in the equations 
of motion (la) and (lb), and using the expressions of the 
elastic restoring forces and driving forces in Eqs. (2) and 
(3a), (3b), respectively, for the open glottis. Hence, 

klXle-{"kc(Xle--X2e) =lsdiPs (Xle-•-Xlo)2-- (X2e'-{-X20) 2 (x•+ xm)2 +•c(x•+ X•o) • ' 
(Sa) 

k2x•+k•(x2•--x•) =0, (Sb) 

where xie (i= 1,2) denotes the equilibrium positions. 
From Eq. (Sb) we obtain the relation 

x:•=ax•, (6) 

where a is the coupling coefficient 

a=kc/(k•+kc). (7) 

Using Eq. (6), X•e can be eliminated from Eq. (Sa), 
which is then rewritten 

(Yle-- 1) 0 Yle"{- '•2½' (8) • 2 2 /• 

where the displacement variable has been changed to 

y•= 1 +x•/x•o (i= 1,2) (9) 

[the additional subindex e in Eq. (8) denotes the equilib- 
rium positions], and the other parameters are given by 

0=Xio/X2o, (10) 

H=pJ ( 1 -]-ctk2/kl), ( 11 ) 

ps= ldlPs]klXiO . (12) 
The variable y• may be considered as a normalized 

ß displacement coordinate, and the parameter p• as a nor- 
malized subglottal pressure. The relation between Yle and 
Y2e is given by 

y•e=CtO(y• -- 1 ) + 1. (13) 

In the following analysis, the simple case of a rectan- 
gular prephonatory glottis, i.e., 0= 1 (xi0=x20), will be 
considered. In this particular case, the above equations 
take a simple form permitting the analytical treatment. 
The cases of convergent and divergent prephonatory glottis 
will be briefly examined in a later section,. 

Letting O=l in Eqs. (8) and (13) and solving them 
for -Pie and Y2o we obtain a first solution 

yl•=y2•= 1, (14) 
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FIG. 2. Diagram of the roots of Eq. (15), with the normalized subglottal 
pressure p• as a parameter. At Ps=P•i one of the roots is zero; at P•----Pa 
both roots coincide. 

which corresponds to the rest position Xle=X2e=O. For 
clarity in the following explanations, this will be called 
equilibrium position R. The other solutions are given by 
the quadratic equation for Yle: 

( 1 + •ct•)•+ ( 1 --a) [2•ca-- ( 1 +a)H]y• 

-- (1 --a)•(H--•) =0, (15) 

together with Eq. (13). 
Let us examine the solutions of Eq. (15), schemati- 

cally plotted in Fig. 2. For a value of Ps (or H) large 
enough, the coefficients of the second and third terms are 
negative, which indicates the existence of two real solutions 
with opposite signs. However, from Eq. (9) we have that a 
negative value of Yle implies x•e < --x m, which corresponds 
to a closed glottis. Since the above equations correspond to 
the open glottis, this solution is invalid. The second posi- 
tive solution implies x•e> --xm and, since by applying Eq. 
(6) we also have x2e>--x20 (recall the assumption 
xm=x•o), this is a valid solution. This solution implies the 
existence of a second equilibrium position, which will be 
called equilibrium position A. When this second equilib- 
rium position becomes coincident with the rest position at 
Yle=Y2e = 1 a bifurcation occurs, as will be shown later. 
Letting y•= 1 in Eq. (15) we obtain 

H=(l+•)/2(1--a). (16) 

If we decrease the value ofps (or H), both solutions of 
Eq. (15) come closer together. When the third term be- 
comes zero at H=K, the previous negative real solution 
crosses the imaginary axis. The value ofp• at this point will 
be denoted as Pa. Then, for Ps <Pse, we have three equilib- 
rium positions; the third equilibrium position will be called 
equilibrium position B. Decreasing Ps further, both solu- 
tions become coincident when the discriminant of Eq. (15) 
is zero, and then complex, in which case only one equilib- 
rium position exists: equilibrium position R at the rest po- 
sition. The value of Ps at the point of coincidence of both 
solutions will be called Psi- Then, the regions of existence of 
equilibrium positions A and B are p•>p• and p•t<p• <Psi, 
respectively. 

0.6 
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03 
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0 
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F•o,. 3. Valu•S Psi and p•2 of the normalized subglottal pressure versus the 
coupling ratio a, for k•/k•= 10 and/•= 1 (rectangular prephonatory glot- 
tis). Equilibrium position A exists for P•>P,a, and equilibrium position B 
for Psl<Ps <Pa. 

B. Closed glottis 

The closed glottis is considered next, i.e., x•<--xm or 
x2<--x•0. We proceed similarly as before, setting the de- 
rivatives in the equations of motion (la) and (lb) equal to 
zero, and introducing the expressions of the elastic restor- 
ing forces and driving forces in Eqs. (2) and (3a), (3b), 
respectively, for this condition. The resultant equations are 
linear in this case and easy to solve. However, the solutions 
obtained are such that xl,>--x m and x•>--X2o, and 
therefore do not correspond to the closed glottis. We can 
then conclude that the equilibrium positions found in the 
open glottis are the only ones present in the model. 

C. Humerical examples 

Numerical examples of the previous results are shown 
in Figs. 3 and 4. 

In Fig. 3, the values of Psi and ps• are plotted as a 
function of a. A ratio k•/k 2 = 10 was used in the calcula- 
tions, given by Ishizaka and Flanagan (1972) as a typical 
value for the two mass model. Typical values for the other 
parameters are listed in Table I. The values ofp• l and p• 
divide the graph in three regions. Below p,• only one equi- 
librium position exists, equilibrium position R at the rest 
position. In the small region between Psi and p,• we have 
three equilibrium positions, R, A, and B; and above p• we 
have two equilibrium positions, R and A. Using the values 
of Table I, the typical condition of the model is expressed 
by a=0.76 and p,=l.91. These values correspond to a 
point abovep•2; hence, two equilibrium positions, R and A, 
exist in the typical condition. 

In Fig. 4, the location of the equilibrium positions in 
the Yl-Y2 plane is shown, for k•/k•= 10, ct =0.76, and Ps as 
a parameter. Equilibrium position B is located close to the 
y• axis and cannot be shown with clarity in this graph. At 
a value ofps=0.40, equilibrium positions A and B cancel 
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TABLE I. Typical values of the parameters of the two-mass model (Ish- 
izaka and Fianagan, 1972). 

Parameter Value 

Length !g 1.4 cm 
Width 

d• 0.25 cm 
d2 0.05 ½m 

Half giottal width at rest (prephonatory 
position) 

xm 0.02 cm 

x:0 0.02 cm 

Subglottal pressure P• 7840 dyn/cm z 

rn• 0.125 g 
rn2 0.025 g 

Stiffness 

k• 80 kdyn/cm 
k2 8 kdyn/cm 
kc 25 kdyn/cm 

Damping ratio 
• =r•/[2(m•kO m] 0.1 
•z = rz/[ 2 ( mzk z) •/z] 0.6 

Pressure loss factor g 0.37 

each other. Note also that equilibrium positions R and A 
coincide at Ps-- 3.07. 

III. STABILITY AND BIFURCATIONS 

A. Characteristic equation 

The stability of the equilibrium positions can be ana- 
lyzed considering only the linear part of the equations of 
motion in the neighborhood of those positions (Gucken- 
heimer and Holmes, 1983). Since all the equilibrium posi- 
tions are lOCated in the open glottis, only the equations of 
motion for this condition need to be considered, given by 
Eqs. (la)-{4) with xi> --xn (i= 1,2). In these equations 
there is a nonlinear factor, the function fp given by Eq. 
(4). This function is then linearized, first, by the usual 
technique of letting 

• 2 

4 

0 1 2 3 4 

Yl 

FIG. 4. Location of the equilibrium positions R, A, and B in the y•-y: 
plane with the normalized subglottal pressure Ps as a parameter, for 
k•/k:--10, a=0.76, and •--1 (rectangular prephonatory glottis). 

Xi=Xie4tei (i= 1,2), (17) 

where ei denotes a small displacement from the equilibrium 
position xie, and, next, by taking the linear term of its 
Taylor expansion at x•. Replacing the result in the equa- 
tions of motion, we obtain the linear equations 

/d2œ1 \ /de• • 

=p•k• ( D•,• + D•,•), (18a) 

[ d:e: 

whe•, from •. (4) and using also •. (9), 

D •fp 2( 1 +•)•y• 
•=xm• (x•2e)= (•e+ff•): , (19a) 

+ 
D:=xm • (x•2•) =-- ,•2.• _ • .2 . (19b) 

The ch•actefistie equation •rr•ponding to •s. 
(18a) and (18b) is 

km• m2] m I m2 mlm2] 

( r• kz+k c rz k•+kc--p•D• s + m+m: ] 
k•+kc--p•D • k2+k c k c k•+p•D2 

+ -0. (20) 
ml m2 ml m2 

The stability of each equilibrium position can then be de- 
te•ined by examining the roots of the above characteristic 
•uation. 

B. Analysis of stability and bifurcations 

The analysis is done considering the typical condition 
given by the values of Table I and adopting the normalized 
subglottal pressure Ps and the coupling parameter a as the 
control parameters. Main results are illustrated by the bi- 
furcation diagram of Fig. 5, explained in the following 
paragraphs. 

The broken curves for Pa and p,• were obtained pre- 
viously in Fig. 3; we saw that equilibrium position A exists 
above curve Pm and equilibrium position B in the small 
region between curves p• and p•. Curve Ps• indicates a 
bifurcation of the saddle-node type, where the two equilib- 
rium positions A and B coincide and cancel each other 
(Guckenheimer and Holmes, 1983). 

Curve EF indicates the points at which two complex 
conjugate roots of the characteristic equation for equilib- 
rium position R cross the imaginary axis and their real 
parts become positive. Below this curve, R is stable. At this 
curve it becomes unstable, and at the same time a stable 
limit cycle appears (shown in the next section through 
numerical computations); i.e., curve EF indicates a Hopf 
bifurcation. This bifurcation has already been found ana- 
lytically in previous works (e.g., lshizaka et aL, 1987), as 
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FIG. 5. Bifurcation diagram with the normalized subglonal pressure p• 
and coupling ratio a as control parameters, for the typical values of Table 
I. Curve EF: Hopf bifurcation for equilibrium position R. Curve EG: 
Hopf bifurcation for equilibrium position A. Curve OL: transcritical bi- 
furcation for equilibrium positions R and A. Curve p•: minimum value of 
Ps for the existence of equilibrium positions A and B (saddle-node bifur- 
eation). Curve pa: maximum value ofp• for the existence of equilibrium 
position B. 

discussed in the Introduction. It shows the existence of an 

oscillation threshold pressure, or minimum value of the 
subglottal pressure required to generate the oscillation. 

Curve EG also indicates a Hopf bifurcation, but in this 
case equilibrium position A is involved. In the left side of 
this curve, this position is stable; at this curve it bifurcates 
into an unstable position and a stable limit cycle (the same 
limit cycle of bifurcation EF). 

Curve OL indicates the points at which equilibrium 
positions R and A coincide, expressed by Eq. (16). In this 
case we have y•e=y2e= 1, and replacing in Eqs. (19a) and 
(19b) we obtain D•=--D2=2/(I+•). Replacing this 
equation in the last term of the characteristic equation 
(20) and also using Eq. (16), it can be shown that the last 
term vanishes, which implies that one of the roots is zero. 
In other words, when equilibrium positions R and A coin- 
cide, a real root of their characteristic equation changes its 
sign. In the case of equilibrium position R the root is neg- 
ative in the lower side of OL and positive in the upper side, 
whereas in the case of equilibrium position A the signs are 
opposite. Considering only the portion OE, we have that 
position R is stable in the lower side and unstable in the 
upper side, whereas position A has opposite properties. 
This shows the existence of a transcritical bifurcation at 

OE: two equilibrium positions coincide and exchange their 
stability properties (Ouckenheimer and Holmes, 1983). In 
the portion EL there is an exchange in the number of roots 
with positive real parts for each equilibrium position; how- 
ever, both equilibrium positions are already unstable on 
both sides of the line, and hence this bifurcation has no 
visible effect. The transcritical bifurcation at OL can be 

interpreted in a broader sense as responsible for the ex- 
change in the equilibrium positions involved in the Hopf 
bifurcations at EF and EG. 

According to this bifurcation diagram, the oscillation 

region is then the region of existence of the limit cycle, 
delimited by the Hopf bifurcations EF (lower and right 
limit) and EG (left limit). It can be clearly seen that it is 
more restricted than the instability region of equilibrium 
position R, in the upper side of OEF. We have then the 
important result that the instability of the equilibrium po- 
sition R alone is not enough to generate the oscillation. 
This result points out the limitations of previous analyses 
with the assumption of small amplitude oscillations around 
the rest position, and justifies the present large amplitude 
approach. 

The values of a and Ps for point E can be used as 
indicators of the limits of the oscillation region. These val- 
ues can be calculated from the characteristic equation (20) 
setting to zero the last two terms (at point E the two roots 
related to each of the Hopf bifurcations are equal to zero), 
with the result 

1 + r•/r• 

a=2+k•/k 2 , (21) 

1 -He [ (kl/k 2) (2q-kl/k •) q- 1 -t-r•/r• 
's=T (22) 

Using the typical values we obtain a:0.18 and ps:0.86, 
which correspond to the case of Fig. 5. 

C. Phase plane plots 

Examples of the oscillation in the Y•-Y2 plane for dif- 
ferent values of the parameters a and p, are plotted in Figs. 
6-9 to illustrate the above results. The plots were obtained 
solving the equations of motion of the two-mass model 
through numerical methods, including the glottal viscous 
resistances neglected in the analysis. Since the results of the 
numerical computations are, in general, in good agreement 
with the analytical results, we can conclude that the ne- 
glect of the viscous resistances does not introduce a signif- 
icant alteration. The analytical locations of equilibrium po- 
sitions R and A are indicated in the plots (equilibrium 
position R is always at yie=y2•= 1 ). 

The plot in Fig. 6 was obtained using the typical values 
a=0.76 and ps = 1.91 (point P• in Fig. 5). The analytical 
location of equilibrium position A is y•e=0.55 and 
y2e=0.66. 

In Fig. 7, the values a=0.3 and p•=7.5 (point P2 in 
Fig. 5) were used, which corresponds to a point near the 
Hopf bifurcation for equilibrium position A. This is also 
suggested by the plot, where we can see that equilibrium 
position R is outside the limit cycle, whereas equilibrium 
position A, at y•e--6.75 and y•e•2.72, i• located near it• 
center. 

In Fig. 8, the values cz=0.15 and œ,=7.5 (point P3 in 
Fig. 5) were used, which correspond to the region where 
equilibrium position R is unstable and equilibrium position 
A is stable, as confirmed by the plot. The real location of 
equilibrium position A is at the center of the spiral trajec- 
tory, with the coordinates y1•=7.28 and y2•=1.64. This 
result is close to the analytical result y•=7.72 and 
y2•=2.01 indicated by point A. 
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FIG. 6. Phase plane plot in the Y•-.V2 plane for the typical values of Table 
I (p,= 1.91 and a=0.?6: point P• in Fig. 5). The analytical locations of 
equilibrium positions R and A are indicated. 

Finally, the plot in Fig. 9 was obtained using the val- 
ues a=0.9 and ps= 1 (point P4 in Fig. 5), which corre- 
sponds to the region where equilibrium position R is stable 
and equilibrium position A is unstable. An initial position 
.V•e=0.12 and y•=0.21 was used, which is the analytical 
location of equilibrium position A. As before, the real lo- 
cation of equilibrium position R can be obtained as the 
center of the trajectory with the result y•e=l.13 and 
y2e=l.10, which is close to the analytical result 
Yle•---y2e = 1. 

IV. CONVERGENT AND DIVERGENT PREPHONATORY 
GLOTTIS 

A. Convergent prephonatory glottis 

The case of a convergent prephonatory glottis, i.e., 
xm>x20, is briefly considered here. The analysis is re- 
stricted to the particular case given by a coupling ratio 
a=0.76, kl/k2--=10 (same as in Fig. 4), and/5=1.1. The 
locations of the equilibrium positions in the Yl-Y: plane 
with Ps as a parameter are shown in Fig. 10, obtained solv- 
ing the system of equations (8) and (13) with the above 
values. 
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3 

Y: 
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-3 
-3 0 3 6 9 12 15 

3 

0 

-3 
0 3 6 9 12 

FIG. 8. Phase plane plot in the.v•-y2 plane forps=7.5, ct=O. 15, and other 
parameters as given in Table I (point P3 in Fig. 5). The analytical loca- 
tions of equilibrium positions R and A are indicated. 

If we compare the Fig. 10 case with the case of a 
rectangular glottis (Fig. 4), some similarities and differ- 
ences can be noted. First, the number of equilibrium posi- 
tions is the same--three; these are denoted as I, II, and III. 
At ps=0.40, equilibrium positions II and III cancel each 
other. Equilibrium position III is equivalent to equilibrium 
position B in Fig. 4, since they have similar location and 
stability properties. In Fig. 10, however, there is no trans- 
critical bifurcation between I and II (they never coincide). 
Applying a stability analysis, we find that equilibrium po- 
sition II is always unstable. This implies that the oscillation 
region is determined only by the instability of equilibrium 
position I: If it is stable, the oscillation will spiral around 
equilibrium position I with decreasing amplitude; and if it 
is unstable, a limit cycle will be generated. 

Equilibrium position I can be considered as equivalent 
to the previous equilibrium position R (at the rest posi- 
tion) for Ps smaller than its value at the coincidence of 
equilibrium positions A and R (i.e., below curve OL in 
Fig. 5), and equivalent to position A forps higher than that 
value (above curve OL in Fig. 5). Inversely, equilibrium 
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FIG. 7. Phase plane plot in the y•-y• plane for ps=7.5, at=0.3, and other 
parameters as given in Table I (point P2 in Fig. 5}. The analytical loca- 
tions of equilibrium positions R and A are indicated. 

FIG. 9. Phase plane plot in the y•-y• plane for ps = 1, a=0.9, and other 
parameters as given in Table I (point P4 in Fig. 5). The analytical loca- 
tions of equilibrium positions R and A are indicated. 
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The number of equilibrium positions is the same as 
before, and they are denoted equivalently as in the case of 
the divergent glottis. Equilibrium positions II and III also 
cancel each other at p,= 0.40. However, note that the tran- 
scritical bifurcation of the rectangular glottis in Fig. 4 sub- 
divides into two saddle-node bifurcations, where equilib- 
rium positions I and II first cancel each other and then 
reappear. The values of Ps for those bifurcations are 
ps=0.89 and 10.96. For values between those limits, we 
have the curious result that there is no equilibrium position 
in the system (but the limit cycle is still present). The 
value ofps at which equilibrium position I becomes unsta- 
ble is p,=0.39, lower than the values for the rectangular 
and convergent glottis; i.e., the divergent glottis helps the 
oscillation decreasing the threshold pressure. 

FIG. 10. Location of the equilibrium positions I, II, and III in the Yl-Yl 
plane with the normalized subglottal pressure Ps as a parameter, for 
k•/kz= 10, a=0.76, and B= 1.1 (convergent prephonatory glottis). 

position II is equivalent to the previous equilibrium posi- 
tions A and R, respectively (in simple words, equilibrium 
position I is always the equilibrium position with the big- 
gest values of the coordinates Yie, and equilibrium position 
II is the one with the smallest). Then, with this definition, 
in the case of the rectangular glottis the oscillation region 
is also determined by the instability of equilibrium position 
I. 

The value of ps at which equilibrium position I be- 
comes unstable is ps=0.43, which is higher than the value 
for the rectangular glottis p,=0.41. Although the differ- 
ence is small, it implies that a convergent glottis restricts 
the oscillation region, increasing the threshold pressure. 

B. Divergent prephonatory glottis 

The case of a divergent prephonatory glottis, i.e., 
xm<x20, is shown in Fig. 11. A value of/•=0.9 and other 
parameters as in Fig. 10 were used in the calculations. 

Y,_ 2 

II p•=1o.9• 

•'g \ =0.89 
',p,-o_4o i I 

3 

0 
0 1 2 3 4 

FIG. 11. Location of the equilibrium positions I, II, and III in the y• 
plane with the normalized subgiottal pressure ps as a parameter, for 
kl/kZ= 10, a=0.76, and/•=0.9 (divergent prephonatory glottis). 

V. DISCUSSION OF THE RESULTS 

First, it is important to point out that the existence of 
more than one equilibrium position does not seem to be 
just a mathematical characteristic of the model without a 
physiological correlate. As explained by Titze (1988), the 
aerodynamic forces act pushing the vocal folds appart in a 
convergent glottis, and sucking them together in a diver- 
gent one. Thus, it seems natural to have at least two equi- 
librium positions, one in a convergent and wide glottis and 
the other in a divergent and narrow glottis, where the aero- 
dynamic forces balance the elastic restoring forces of the 
vocal folds. Note in Fig. 10 that at equilibrium position I 
the glottis is convergent and wider than at the rest position, 
i.e., yle>Y2e and y•e > 1, y2e> 1; whereas at equilibrium po- 
sition II it is divergent and narrower, i.e., y•e<Yze and 
Yle< 1, Y2e < 1. 

In his work, Titze ( 1988} also showed the existence of 
a secondary equilibrium position, which is the position as- 
sumed by the vocal folds when the air is flowing. That 
secondary position is equivalent to the present equilibrium 
position I: Both are located at the rest position for a sub- 
glottal pressure eqt/al to zero and move to widen or narrow 
the glottal area in a convergent or divergent prephonatory 
glottis, respectively, when the subglottal pressure is in- 
creased from zero. Since small-amplitude oscillations 
around this secondary possition were assumed by Titze, his 
analysis did not show the other equilibrium positions (II 
and lid and related bifurcations. For that reason, some 
differences with his results can be noted; e.g., in the ease of 
the rectangular glottis, the secondary position is located at 
the rest position, whereas equilibrium position I is at the 
rest position only for a subglottal pressure lower than the 
value corresponding to the transcritical bifureation. Also, 
Titze's equations show that the secondary equilibrium po- 
sition dissapears at a certain subglottal pressure in a diver- 
gent prephonatory glottis, but do not show that it reap- 
pears at a higher value of the subglottal pressure, as in 
Fig. 11. 

In spite of the differences, the results support Titze's 
approach to analyze the vocal fold oscillation. As stated 
previously, the generation of the oscillation is only deter- 
mined by the instability of equilibrium position I. Hence, 
the oscillation conditions can be studied assuming small 
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amplitudes around it (but not around the rest position), as 
in Titze's analysis. An interesting subject for further study 
would be the extension of his analysis to incorporate the 
findings of this work, such as those discussed above for the 
rectangular and divergent prephonatory glottis. 

Considering now equilibrium position III, and noting 
its small region of existence, we can conclude that it prob- 
ably has no significant role in the oscillation. 

The results of this analysis can also be examined rela- 
tive to the negative differential resistance (NDR) oscilla- 
tion theory presented by Conrad and McQueen (1988). In 
their work, they first analyzed the semitransglottal pres- 
sure in the two-mass model, defined as the pressure drop 
between the subglottal value and the pressure at the junc- 
tion between both masses, as a function of the air volume 
velocity in a steady flow condition. They then showed the 
existence of a region of negative differential resistance in 
the case of a weak coupling between the masses (ke/k 2 • 1 ); 
i.e., a region where an increase in the air volume velocity 
produces a decrease of the semitransglottal pressure. Based 
on this result, they explained the oscillation postulating 
that it is generated when this negative resistance overcomes 
the positive resistive part of the related aerodynamic im- 
pedances. Thus, the two-mass model was linked with the 
previous collapsible tube model (Conrad, 1983), also 
based on the existence of a negative differential resistance. 

However, we can see in Fig. 5 that the region of weak 
coupling (a--0) is outside the oscillation region. (In Con- 
rad and MeQueen's analysis, a convergent prephonatory 
glottis with/•----1.1 ! was adopted. Although Fig. 5 corre- 
sponds to/•= 1, the difference is small and does not intro- 
duce a significant change in the oscillation region.) Conrad 
and McQueen's results show that the negative resistance 
appears for values of k,,/k2 lower than approximately 8, 
which corresponds to a coupling ratio a=0.11; but we 
found that the minimum value of the coupling ratio for the 
oscillation region is a =0.18, which implies that the region 
of negative resistance is outside the oscillation region. We 
can then conclude that the oscillation is not caused by the 
existence of the negative resistance, which disproves Con- 
rad and MeQueen's theory and also questions the validity 
of the collapsible tube as a suitable model for the vocal 
folds. 

VI. CONCLUSION 

It has been shown that the dynamics of the vocal fold 
oscillation is far more complex than assumed in previous 
works, with the existence of more than one equilibrium 
position and several bifurcation phenomena. The results 
support the previous approach by Titze (1988) suggesting 
a large-amplitude extension of his work. On the other 
hand, they disprove the previous theory based on the ex- 
istence of a negative differential resistance. These findings 

are important to understand the vocal fold oscillation and 
to set the direction for further analytical studies. 

However, an important point has been left in this anal- 
ysis: What do the equilibria and bifurcations mean in terms 
of phonation? The answer is not clear, perhaps because of 
the adoption of the two-mass model, as anticipated in the 
introductory section. We recall that the intention of this 
study has been to provide a first insight into the oscillation 
dynamics from a general large amplitude approach. Fur- 
ther studies with a more suitable model, such as a possible 
extension of Titze's model whose body-cover structure is 
closer to the vocal fold anatomy, will be required as a next 
step for a better correlation with the voice physiology. 
Also, experimental research will be needed to confirm and 
complement the analytical results. 
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