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In previ?us experimental studies it has been observed that the minimum lung pressure to sustain 
vocal fold oscill•ttion after its onset is lower than the threshold pressure needed to initiate it. This 
phenomenon is Studied analytically using a previous body-cover model of the vocal folds and 
applying the des•Gbing fundtion method to the general case of large ampliitude oscillations. It is 
shown that the phenomenon is a consequence of the nonlinear characteristic of the effective 
aerodynamic damping introduced by the air pressure acting on the vocal folds. The results predict 
a v.alue for minimum sustaining pressure equal to half the threshold pressure for a rectangular 
prephonatory glottis, which is in the orde:r of experimental ]results. ¸ 1995 Aco•stical Society of 
America. 

PACS numbers: 43.70.Bk, 43.70.Aj 

INTRODUCTION 

It is known that a minimum positive value of the lung air 
pressure, called the oscillation threshold pressure, is required 
to initiate the vocal fold oscillation. Using a simpliified body- 
cover model of the vocal folds, Titze (1988) showed analyti- 
cally that for lung pressure above the threshold value, the 
energy transferred from the airflow to the vocal folds over- 
comes the energy lost in the tissues by dissipation, [.emitting 
the generation of their oscillation. In experimental studies on 
excised canine larynges, Baer (1975) also obserw:d that the 
minimum pressure required to sustain the oscillatioa after its 
onset is lower than the threshold value; i.e., the pressure has 
to be lowered a certain amount below the threshold to stop 
the oscillation. He measured values in the range of 0.3-0.8 
kPa for the threshold pressure, and 0.2-0.4 kPa for the mini- 
mum sustaining pressure. More recently, Titze et al. (1994) 
obtained similar results on a physical model of •:he vocal 
folds, with 0.37-0.65 and 0.33-0.55 kPa for the same pres- 
sures. 

This paper presents an analytical study of this phenom- 
enon to explain the lower value of the minimum sustaining 
pressure with respect to the threshold. A previou• attempt 
was presented elsewhere by Lucero and Gotoh (1993) based 
on a variation of the two-mass model. H•re, Titze's body- 
cover model will be adopted, which incorporates the layered 
tissue structure of the vocal folds and is thus closer to their 

physiology. In his analysis, small amplitude oscillations were 
assumed to linearize the equations of motion and determine 
the threshold conditions to initiate the oscillations. At thresh- 

old, the oscillation amplitude is zero and the small amplitude 
restfiction is valid. Since we are interested in the conditions 

to maintain the oscillation after it has started, i.e... when the 
oscillation amplitude has some value, general l•urge ampli- 
tude oscillations will be considered in the present study. 

A better knowledge of the minimum sustaining pressure 
would find some application to pronation theory. For ex- 
ample, in a recent work, Titze (1992) included the phonation 
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threshold pressure to derive aerodynamic laws relating the 
lung pressure and glottal flow, based on the fact that a finite 
pressure is required to establish an infinitesimal oscillatory 
flow. Those laws might be improved by replacing the thresh- 
old pressure by the minitnum sustaining pressure, since the 
oscillatory flow created by the threshold pressure takes a 
finite value after the oscillation has started. 

I. VOCAL FOLD MODEl_ 

The body-cover model (Titze, 1988) is schematically 
shown in Fig. 1. There, the body of the vocal fold is station- 
ary, and the cover pr.opag,,tes a surface wave along the glottis 
in the direction of the airflow. The vocal folds are assumed to 

be symmetric with respect to the vertical midline. For clarity 
of the present analysis, let us recall briefly Titze's derivation 
of the equation of motion. 

The glottal area along the glottis is 

a(z,t): 2L[ •0(z) + •:, (z,t)], (1) 

where z is the distance from the midpoint of the glottis in the 
direction of the airflow, L is the length of the vocal folds, 
•0(z) is the prephonatory glottal half-width, and •(z,t) is 
the displacement of the cover due to the surface wave. The 
general expression of the surface wave displacement is 

(z, t) = z/c), (2) 

which is the solution of the one-dimensional wave equation 
with wave velocity c. Tftis expression is approximated ex- 
panding it in a Taylor series around z: 0, and keeping the 
linear terms 

•](t-z/c)•- •-, (3) 
where •=•(0,t) is the displacement of the cover at the 
midpoint. This approximation implies the assumption of a 
low value for the re] ation 

'r= (z/c), (4) 

which is the time delay ,of the surface wave in movement 
from the lower edge of the vocal fold to the midpoint, or 
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FIG. 1. Diagram of the body-cover model of the vocal folds. Broken line: 
prephonatory position. T: vocal fold thickness. •0• and •02: prephonatory 
glottal half-widths at the lower and upper edges of the vocal folds. •: dis- 
placement of the cover at the midpoint of the vocal fold (Titze, 1988). 

from the midpoint to the upper edge. To test the validity of 
this assumption, Titze considered the solution 
Gt(z,t)=sin w(t-z/c). In this case, the approximation in 
Eq. (3) is equivalent to the small-angle approximation 
sin(toz/c) • ( toz/c), or 

to,'• ,r/2. (5) 

Typical values obtained experimentally for the phase delay 
to•- are in the range of 300-45 ø [600-90 ø for the phase delay 
between the lower and upper edges of the vocal folds (Baer, 
1975)]. The above approximation is then a bit crude for the 
vocal fold oscillation, but it may be adopted to facilitate the 
analytical treatment. 

The glottal pressure Pg acting on the vocal folds is cal- 
culated as the mean glottal pressure 

1 •+r12 P g= 7 ,t-r/2 P( z)dz, (6) 
where P(z) is the glottal pressure distribution along the glot- 
tis and T is the half-thickness of the vocal fold. P(z) is 
derived from the Bernofi'11i energy equation 

P(z)=P2+Pk2 1- a2(z)] , (7) 
where P2 is the exit pressure, Pa2=(p/2)lulu/a} is the ki- 
netic pressure, p is thd air density, u is the exit airflow, and 
a 2 is the glottal area at exit. The integral in Eq. (6) can be 
evaluated considering the glottal area gradient along the glot- 
tis, from Eq. (1), 

c•a [dGo 2L + l' (8) 
Using next the linear approximation in Eq. (3) to calculate 
O•/Oz, we obtain 

[aGo laG] :2L[ c (9) 

The second term between the brackets in this equation is 
independent of z; hence the variation of the glottal area gra- 
dient with z depends only on the first term, related to the 
prephonatory shape. For simplicity, we assume a linear varia- 
tion of the prephonatory glottal area along the glottis, i.e., 

(G0+G02) (G0- G02)z 
Go(Z) = 2 :r ' (10) 

where G0] and •02 are the prephonatory glottal half-widths at 
the lower and upper edges of the vocal folds, respectively. 
Substituting d•o/dz in Eq. (9), we obtain 

Oa [G02 Gol 1 ds •] 
which is independent of z. This means that under the as- 
sumption of a linear variation of the prephonatory glottal 
area along the glottis, the approximation of Eq. (3) implies a 
linear variation along the glottis also for the time-varying 
glottal area, even in the general case of large amplitude os- 
cillations. Using this result, the integral in Eq. (6) yields 

Pg=P2+Pk2 1 -- Z ' (12) 
where a I is the glottal area at entry. 

We will consider the simple case in which (1) the sub- 
glottal pressure is constant during the oscillation and equal to 
the lung pressure, (2) the vocal tract input pressure is equal 
to the atmospheric pressure, and (3) the supraglottal area is 
large compared with the glottal area at the upper edge of the 
vocal folds. The first two assumptions correspond to an ex- 
cised larynx, and the last one is a typical condition for the 
vocal folds. In this case, the glottal pressure becomes 

(Pœ) Go,-Go2+2r(d•/dt) Pg= •-t GOl+G+r(dG/dt) , (13) 
where Pc is the lung pressure, and k t is an empirical coeffi- 
cient related to the pressure losses due to turbulent flow and 
glottal viscous resistance. 

The mechanical properties of the vocal fold tissue are 
next lumped at the midpoint of the glottis, which yields the 
equation of motion 

m •-•--•- + B +KG=Pg, (14) 
where M, B, and K are the lumped effective mass, damping, 
and stiffness per unit area of the cover. The details on the 
derivation of the above equations can be found in Titze's 
paper (Titze, 1988); in particular, the above equation (13) is 
identical to Tit•e's Eq. (22). 

It is also important to note that the above equations cor- 
respond to oscillations in an open glottis, i.e., the glottal 
closure is not included in the model. This restricts the oscil- 

lation amplitude to values smaller than the one at which the 
glottal closure occurs. However, we remark that the equation 
of motion was derived without any assumption of infinitesi- 
mally small oscillation amplitude; therefore, the equation of 
motion is valid for finite (large) values of the oscillation 
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FIG. 2. Possible laws for variation of the lung pressure Pœ to sustain the 
oscillation at an amplitude A. 

suddenly from 0 to A 2. However, remember that we have 
plotted the steady-state values of the amplitude; the actual 
growth of the alnplirude will be gradual. The amplitude will 
then grow until A2, as the lung pressure reaches PL2 (point 
2). When the pressure is :iecreased back, the amplitude will 
also decrease until A 3 at pressure PL3 (point 3). We can see 
that the oscillation will continue even though the lung pres- 
sure has a value lower than the oscillation threshold pressure 
(PL3(PLi). When the pressure is decreased below this 
point, the amplitude will decrease to 0 (point 3') and the 
oscillation will stop. The minimum lung pressure to sustain 
the oscillation is then PL3, i.e., the minimum of the curve. 
Note that a hysteresi• loop appears, given by points 
1-1 '-3-3'. 

In both cases the lur.g pressure increases to infinity at 
large values of the oscillation amplitude. This is a physical 
necessity to limit the o.•cillation amplitude; otherwise it 
would grow unbounded fer finite values of the lung pressure. 
Hence, the curve of the lung pressure must have a minimum, 
at zero amplitude as in Fig. 2(a), or at a larger amplitude as 
in Fig. 2(b). 

In the following analysis we will see that the vocal fold 
oscillation correspords to the second case, which explains 
the experimental measurements. 

amplitude, although within the open glottis condition, and 
may be used to study the oscillation after its onset. 

II. ANALYSIS OF THE AIR PRESSURE 

A. Relation between the lung pressure and the 
oscillation amplitude 

Before the analytical treatment, let us discuss the rela- 
tion between the lung pressure and the oscillation amplitude, 
to clarify concepts. Suppose that we measure the oscillation 
amplitude A at various fixed lung pressures P•, and plot the 
results. 

Figure 2 shows two possible shapes for the resultant 
curve Pt.(A). It would seem more natural to consider the 
oscillation amplitude as a function of the lung pressure, but 
we have choosen the inverse for comparison with the ana- 
lytical results of next sections. In Fig. 2(a), the lung pressure 
increases monotonously with the oscillation amplitude, i.e., 
higher pressures are necessary to produce oscillation at 
higher amplitudes. The oscillation threshold pressure is the 
pressure at zero amplitude (Pt.t), since a pressure higher 
than this value is required to produce the oscillation. If the 
pressure has a value P•2• > P•t, the oscillation amplitude will 
grow from zero until the value A 2, shown in Fig. 2, after 
which it will continue with this constant amplitude. 

In Fig. 2(b), the lung pressure first decreases with the 
oscillation amplitude, and then increases at large amplitudes. 
Let us consider what will happen when the lung pressure is 
gradually increased from 0 to a value such as P•:, and then 
decreased back to O. When reaching P•t (the oscillation 
threshold), the oscillation will start and its amplitude will 
grow from zero (point l) until the steady amplitude/t t (point 
1'). In the plot it would seem that the amplitude x•ill jump 

B. Describing function rot the glottal pressure 

In his analysis, Titze linearized the equation of the glot- 
tal pressure assuming small amplitude oscillations, and ex- 
pressed its action in terms of an effective aerodynanfic stiff- 
ness and an effective aerodynamic damping. He then 
obtained the threshold pressure as the pressure required for a 
zero value of the total damping, equal to the aerodynalnic 
damping plus the cover damping. This approach is extended 
here to the case of large amplitude oscillations, to derive 
expressions for the aerodynamic terms as functions of the 
oscillation amplitude. 

When the vocal [olds are oscillating with a constant am- 
plitude, the tissue displacement • is some periodic function 
of time •(t), which must be a solution of Eq. (14). We will 
apply the describing function method (Siljak, 1969) !o deter- 
mine the conditions 1-or this periodic solution to exist. 

I:irst, we assume that the periodic solution may be ap- 
proximated by the si msoi.:ial function 

(15) 

where } is a static displace, merit and • is an oscillatory com- 
ponent, given by 

•=A sin tot, (16) 

where A is the oscillation amplitude. The numerical solution 
of Eq. (14) shows that the oscillation is close to a sinusoidal 
function (Titze, 1988), wh ch justifies the approximation. As 
noted before, the amplitude A may have any finite value, 
with the restriction that it must be smaller than the value to 

cause the glottal closure. Due to the assumption of a linear 
prephonatory glottal shape, in the case of a convergent pre_- 
phonatory glottis (•ot<•,_) the range of A is 0•<A < sc02 + s c. 
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and in the case of a divergent prephonatory glottis (•01 >h•02) 
it is 0•A<•o•+ •. 

The only nonlinear term in Eq. (14) is Pg. This term can 
be quasilinearized through its descfi. bing function, as fol- 
lows. Introducing F_xl. (15) into Eq. (113), we obtain 

Pg= •m+•+A sin •ot+•o?A cos tot 
This equation is next expanded into a Fourier series, 

Ps=No+N• sin tot+N2 cos •ot+ .... (18) 
where N 0, N 1 , N 2 ..... are the Fourier coefficients. Since we 
have assumed that the oscillation is close to a sinusoidal 

function, then the higher harmonics terms in Eq. (18) may be 
considered small and neglected. Hence, keeping only the 
constant and first harmonic terms, and using also Eqs. (15) 
and (16), we obtain 

•- (19) 
where K' =Ni/A is the effective aerodynamic stiffness and 
B'=N2/(toA) is the effective aerodynami,'c damping (the 
signs are chosen to obtain positive values for K t and B', 
equivalent to Titze's notation). Introducing Eqs. (15) and 
(19) into the equation of motion (14), this becomes 

M •-•-+(B-B') •-•+(K+K')•+K•=N o. (20) 
The coefficients N o, K', and B' are calculated through 

the relations 

No-- Pg( O)aO, (21) 

K'- Pg(0)sin 0 dO, (22) rrA 

I f2*rp B'- 0)cos 0 dO, (23) moA J0 
where 0= tot. Since the equation of motion was derived as- 
suming a small value for to•', the last term in the denominator 
of Eq. (17) may be neglected, which facilitates the evaluation 
of the above integrals. 

Considering first N o , we have 

Pr fo l*r •o•-•o2+2(0•'A cos Odo ' (24) Nø=2--•t s•01+•+A sin 0 
The limits of integration may be changed using the relations 

+f(-sin 0, cos O)]dO, (25) 

/0?(sin 0, cos O)dO=•ia[f(sin 0, cos 0) 
+f(sin 0,-cos O)]dO, (26) 

with the result 

2P•.(•0•- •02) f,r/2 dO No- •rkt(•ol+• ) •o 1-a 2 sin 2 0' (27) 
where 

a =A/(•01 + •) (28) 

is the normalized oscillation amplitude. This integral may 
then be calculated introducing the change of variable 
t =tan 0, which yields 

2P•.(•Ol -- •o2) •o • dt No- •kt(•Ol + •) 1 +(1-a2)t 2 

= 2Pt(•ol - •o2) [tanZ'( l•i•--a2t).]øø + b Jo 

kt(•01 q- •) ' 
(29) 

The integrals for K' and B' may be calculated through 
the same steps as above, with the final results 

K,_Pœ(•o'-•o2) ( . 2 ) kt(•o, + •)2 1 - a•q • lxfi-Z•-a 2 ' (30) 

+O 1+ ' 

F_inally, the static displacement • is obtained setting to 
zero • and its derivatives in Eq. (20), obtaining 

K•--PL(•Ol--•---02) ( l•) (32) + ' 

Equations (30)-(32) are similar to those obtained by 
Titze for K', B', and {•. In the case of Eqs. (30) and (32), the 
only difference is the introduction of the last factors contain- 
ing the normalized_amplitude a, which expresses the depen- 
dence of K' and • on the oscillation amplitude. Equation 
(31), besides the presence of the last factor in a, is slightly 
different from Titze's equation for B', as a consequence of 
the neglect of the last term in the denominator of Eq. (17). 

Note in Eq. (20) that the aerodynamic damping B' sub- 
tracts from the tissue damping B, indicating a transfer of 
energy from the airflow to the vocal folds. The oscillation is 
generated when the energy transferred to t.he vocal folds 
overcomes the energy dissipated in the tissues, The aerody- 
namic damping (and the energy transferred to the vocal 
folds) has its minimum at an oscillation ampli.•ude A = O, i.e., 
at the start of the oscillation, and increases with A. This 

nonlinear characteristic of the aerodynamic, damping is re- 
sponsible for the lower value of the minimum pressure to 
sustain the oscillation, as explained in the next section. 

C. Minimum pressure to sustain the oscillation 

From Eq. (20), we have the following conditions for a 
sustained oscillation of the vocal folds. First, the static dis- 

placement •, gi. ven by the solution of Eq. (32), must exist; 
otherwise, the assumed solution of the equation of motion, 
Eq. (15), would not be valid. Next, the roots of the charac- 
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FIG. 3. Prephonatory glottal configurations. h •0•=0.04 era, •2=0.16 cm. 
2:•o•=0.08 cm, •2=0.12 cm. r: •o•=•2=0.1 cm. 3:•:=0.12 cm, 
•0•=0.08 cm. 4:•0•=0.16 cm, •o2=0.04 cm. 

terisfic equation of Eq. (20) must be purely imaginaiy, which 
implies the conditions B- B' = 0 and K+ K' >0. Replacing 
•-in Eq. (31) by Tl(2c), and solving for the lung pressure, 
we obtain 

PL = T , (33) 
which is the lung pressure necessary to sustain the oscillation 
at a given normalized _amplitude a. This equation contains 
the static displacement •, which according to Eq. (32) is also 
a function of the lung pressure PL- Co_mbining Eqs. (32) and 
(33) to eliminate Pt, and solving for •, we obtain 

Sc(0,- 02) ( 1+ 8= 2Kr -• .], (34) 
which is the static displacement at a sustained osciltation of 
normalized amplitude a (i.e., at a lung pressure to sustain the 
oscillation of amplitude a). Similarly, combining Eqs. (30) 
and (33), we obtain the effective aerodynamic stiffness at the 
same oscillation amplitude 

K' Bc(•ø'-•ø•)( l•_a2 ) (35) :r(•01 + •) 

At the start of the oscillation, a=0. In this case, the 
value of P• given by Eq. (33) is the threshold pressure 

l•,Bc( •o• + •) 
Pœ = T (36) 

The static displacement at the threshold pressure reduces to 

c(01 - • (37) 
To examine the behavior of P• for oscillatior ampli- 

tudes a>0, we will consider the same four prephonatory 
glottal configurations studied by Titze (1988), shown in Fig. 
3, plus the rectangular configuration. The glottal convergence 
angle is increased from configuration 1 to 4 kee•ping the 
mean glottal half-width constant at O.l cm, and varying 
and •0a from 0.04 to 0.16 cm in opposite directions. Configu- 
rations and 2 are divergent, and 3 and 4 are convergent. 
The rectangular configuration is denoted as configmation r, 

0 

(cm) 

-0.08 

B / 
/ 

4.// 

ß 3 
/' 

/ /, 

! I 

0 0.05 0.1 

A (cm) 

FIG. 4. Static displacement • vs he oscillation amplitude A. Lines a and b: 
glottal closure for configurations I and 4, and 2 and 3, respectively. Curves 
in broken line•: K+ K'•<0. 

with •01=•02=0. l cm. The other parameters are given the 
values T=0.3 cm, Bc=l kPa, K=200 kdyn/cm 3, and 
kt= 1.2. 

Figure 4 shows the static displacement • versus the os- 
cillation amplitude A. obtained from Eqs. (28) and (34). Line 
a has the equation •=A-0.04, which is the glottal closure 
condition for configurations I (•=A-•0_•) and 4 
(•=A-•02), while line b has the equation •=A-0.08, 
which is the glottal closure condition for configurations 2 
and 3. In the divergent configurations I and 2, • tends as- 
ymptotically to these line.,;. On the curves in broken lines, 
i.e., the entire curve for configuration I and part of the curve 
for configuration 2, the total stiffness is K+K'•<0, and 
hence the condition of positive total stiffness for the exist- 
ence of the oscillatory solution is not satisfied. Note that 
configuration 1 does not satisfy this condition at any ampli- 
tude. Also, note that in the divergent configuration 2 there is 
a region with two po:•sible values of the static displacement 
for a given oscillation amplitude, and that there is a maxi- 
mum value for the oscillation amplitude. The implications of 
these features for the divergent configurations are beyond the 
scope of this analysis, and hence are left for future studies. 

Figure 5 shows the lung pressure P• to sustain the os- 
cillation at an amplitude A, obtained from Eqs. (28) and (33), 
and using the values of the static displacement calculated 
previously. Only the curve• which satisfy the conditions for 
the osci!latory solution are shown; configuration 1 has been 
left out altogether and the curve for configuration 2 stops at 
the zero total stiffness condition. Curves for configurations 3, 
4, and r stop at the glottal closure. Note that in all the con- 
figurations the values of the lung pressure decrease with the 
oscillation amplitude after the oscillation starts. In the cases 
of the divergent configura-ion 2, the curve shows that the 
oscillation amplitude first g-rows until a maximum value, af- 
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FIG. 5. Lung pressure Pt to sustain the oscillation at an amplitude A. 

ter which it decreases as the static displacement becomes 
closer to the glottal closure (compare with Fig. 4). However, 
along all this variation of the oscillation amplitude the mini- 
mum sustaining pressure decreases continuously. The pres- 
sure values increase with the prephonatory convergence 
angle, i.e., more pressure is required to sustain oscillation in 
a convergent glottis than in a divergent one. This follows 
from Eqs. (33) and (34): Note that PL is proportional to 
•ot + •, and also that • is positive in a convergent glottis and 
negative in a divergent one. 

The relation between the lung pressure and the oscilla- 
tion amplitude correspond then to the case shown schemati- 
cally in Fig. 2(b). The curves in Fig. 5 do not show the 
increase of the lung pressure at large oscillation amplitudes, 
since they stop at the limits of validity of the model (i.e., the 
glottal closure or the zero stiffness condition). The minimum 
pressure to sustain the oscillation is then the minimum value 
of PL. In Fig. 5 this minimum occurs at the end of the 
curves; the model does not permit one to tell then whether 
this is the actual minimum, since this could be located be- 
yond these limits of validity (as discussed previously, a mini- 
mum must exist; otherwise the oscillation amplitude would 
grow unbounded). However, we may calculate this minimum 
value as reference. In the case of the rectangular configura- 
tion, the minimum occurs at a = 1; from Eq. (33) we obtain 
for this value 

P•= 2T (38) 
Comparing with Eq. (36), we have that the ratio between the 
threshold pressure and the minimum sustaining pressure is 
1/2. In the case of Fig. 5, the threshold and minimum sus- 
taining values are 400 and 200 Pa, respectively. We can com- 
pare these values with those obtained by Titze et al. (1994). 
For a prephonatory glottal half-width of 0.1 cm, they mea- 
sured values of 370-590 and 330-510 Pa for the threshold 

and minimum sustaining pressures, respectively, with a ratio 
between both pressures around 0.87. The analytical value for 
the minimum sustaining pressure is lower than the experi- 
mental values, but they are in the same order. Considering 
the simplifying assumptions introduced in the analysis, we 
may say that the results agree with the experimental mea- 
surements. In the cases of configurations 2-4 the threshold 
pressures are 293, 507, and 720 Pa, respectively, and the 
minimum sustaining pressures are 117, 443, and 703 Pa, re- 
spectively. The ratios between both pressures are 0.40, 0.87, 
and 0.98, for the respective configurations. 

III. CONCLUSION 

The observed lower value of the minimum pressure to 
sustain the vocal fold oscillation after its onset, compared 
with the threshold value, has been analytically examined us- 
ing a body-cover model of the vocal folds. It has been shown 
that this phenomenon is a consequence of the nonlinearity of 
the effective aerodynamic damping introduced by the glottal 
pressure on the vocal folds. The results are in agreement with 
previous experimental measurements, which validates the 
analysis. 
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