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Recent experimental measurements have shown a nonlinear relation between the phonation
threshold pressure and the prephonatory glottal width, with a minimum for the threshold pressure
which would indicate the existence of an optimal glottal width for ease of phonation@I. R. Titze
et al., J. Acoust. Soc. Am.97, 3080–3084~1995!#. This relation is studied analytically using a
simplified vocal fold model which includes an explicit term for the air pressure losses due to glottal
viscous resistance. It is shown that the observed nonlinearity may be a consequence of the viscous
pressure losses, which cause an increase of the threshold pressure at small values of the
prephonatory glottal width. ©1996 Acoustical Society of America.

PACS numbers: 43.70.Aj, 43.70.Bk@AL #

INTRODUCTION

The phonation threshold pressure, defined as the mini-
mum lung pressure required to initiate the vocal fold oscil-
lation, has been studied in recent works from both theoretical
and experimental approaches~Titze, 1988, 1989, 1992; Titze
et al., 1995; Lucero, 1995!. An analytical expression in
terms of the glottal geometry and biomechanical parameters
was derived by Titze~1988!, assuming a surface wave propa-
gating through the cover of the vocal folds and small-
amplitude conditions. The expression predicted a linear in-
crease of the threshold pressure with the prephonatory glottal
width. Its validity was later tested in experimental measure-
ments by Titzeet al. ~1995! on a physical model of the vocal
fold mucosa, where the air pressure to initiate the mucosa
oscillation was measured for various glottal conditions. The
results confirmed in general the analytical predictions; how-
ever, it was found that the threshold pressure did not de-
crease to zero as the glottal width was reduced. Instead, a
nonlinear relation with a minimum at a positive glottal width
was observed.

Since the threshold pressure may be considered as a
measure of ease of phonation, a minimum value would mean
the existence of an optimal glottal width~i.e., a glottal width
at which the effort required to initiate phonation is mini-
mum!, as noted by Titzeet al. ~1995!. A possible explana-
tion for the nonlinear relation between threshold pressure
and glottal width was offered in their paper, attributing it to
a glottal closure in part of the oscillatory cycle. However,
since the vocal folds are separated at the start of their oscil-
lation, the threshold condition could not be influenced by
glottal closure. Mathematically, the oscillation threshold cor-
responds to a Hopf bifurcation, at which a stable equilibrium
position becomes unstable and a limit cycle is produced
~Lucero, 1993!. Since the stability properties of an equilib-
rium position are determined only by local conditions~i.e., in
small neighborhood of the equilibrium position!, the oscilla-
tion threshold must be described only by the open glottis
dynamics. Thus an alternative explanation must be sought.

In this Letter we will investigate the influence of the

glottal viscous resistance, which was not considered in the
previous analyses. Note that the difference between the ana-
lytical prediction and the experimental result appears at low
values of the glottal width, precisely where pressure losses
by viscous resistance become significant; hence, a relation
between them is possible. We will thus extend Titze’s analy-
sis including a viscous resistance term in his equations, and
will then re-examine the threshold condition.

I. VOCAL FOLD MODEL

The vocal fold model is shown in Fig. 1~Titze, 1988!.
The vocal fold body is stationary, and the cover propagates a
surface wave in the direction of the airflow. Assuming a
small time delay of the surface wave in moving from the
lower to the upper edges of the vocal fold, and lumping the
biomechanical properties of the vocal fold at the midpoint of
the glottis, we obtain the equation of motion

M j̈1Bj̇1Kj5Pg , ~1!

whereM , B, andK are the lumped effective mass, damping,
and stiffness per unit area of the cover, respectively,j is the
lateral displacement of the cover at the midpoint, andPg is
the glottal pressure acting on the vocal fold~Titze, 1988!.

In his analysis, Titze considered for the transglottal pres-
sure the expression

Ps2Pi5ktru
2/2a2

2, ~2!

wherePs is the subglottal pressure,Pi is the pressure at the
vocal tract input,kt is an empirical coefficient related to
kinetic pressure losses for the formation of a vena contracta
at the glottal entry and turbulent pressure recovery at the
glottal exit, r is the air density,u is the air volume flow
velocity, anda2 is the glottal area at the upper edge of the
vocal fold. The glottal viscous resistance was considered to
be part of the coefficientkt .

Here we will add an explicit term for the viscous resis-
tance. From experimental measurements on a cast model of
the larynx at steady flow condition, van den Berget al.
~1957! observed a good agreement between the measured
viscous pressure loss and the Poiseuille formula

DPv512mL2Tu/a3, ~3!a!Electronic-mail: lucero@cic.unb.br
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wherem is the air viscosity,L is the vocal fold length,T is it
thickness, anda is the glottal area, which was constant along
the direction of the airflow.

In our model the glottal area varies in time and along the
glottis; it is not clear how Eq.~3! should be modified for
these conditions. We assume first a rectangular prephonatory
glottis, i.e., a constant glottal area along the airflow direction.
Note that the experimental results obtained by Titzeet al.
~1995! were also obtained with a rectangular prephonatory
glottis. We also assume small amplitude oscillations, since
we are interested only in the threshold conditions. Under
these assumptions, the glottis is approximately rectangular
during the vocal fold oscillation; we will use then Eq.~3! as
an approximation taking the glottal areaa as the area at the
midpoint of the glottis. Equation~2! is hence modified to

Ps2Pi5
ktru

2

2a2
2 1

12mL2Tu

a3
. ~4!

The glottal pressurePg acting on the vocal folds is next
calculated as the mean glottal pressure along the glottis
~Titze, 1988!

Pg5
1

T E
2T/2

T/2

P~z!dz, ~5!

whereP(z) is the intraglottal pressure, and the origin of the
z axis has been taken at the midpoint of the glottis. The
intraglottal pressure may be expressed by

P~z!5P21
ru2

2a2
2 S 12

a2
2

a2~z!
D 1

12mL2u~T/22z!

a3
, ~6!

whereP2 is the exit pressure~Titze, 1988! anda(z) is the
intraglottal area. The last term was added to the original
equation in Titze’s paper assuming that the viscous losses
vary linearly along the glottis@note in Eq.~3! that the vis-
cous losses are proportional to the glottal thicknessT#.

The assumption of a small time delay for the surface
wave plus a linear variation of the prephonatory glottal area
along the glottis implies a linear variation along the glottis
also for the time-varying glottal area~Lucero, 1995!, i.e.,

a~z!5a11
a22a1
T S z1

T

2D , ~7!

wherea1 is the glottal area at the lower edge of the vocal
fold. Introducing Eqs.~6! and ~7! into Eq. ~5! and integrat-
ing, we obtain

Pg5P21
ru2

2a2
2 S 12

a2
a1

D1
6mL2Tu

a3
. ~8!

The above equations may be simplified further assuming
as in Titze~1988! that the subglottal pressurePs is constant
and equal to the lung pressurePL , the vocal tract input pres-
sure is equal to the atmospheric pressure~Pi50!, and the
supraglottal area is large compared witha2, which implies
P25Pi . The first two assumptions neglect the loading effect
of the subglottal system and the vocal tract, and might seem
a crude approximation. They are introduced to eliminate pa-
rameters and reduce the model to the basic vocal fold dy-
namics, following previous analytical studies of the vocal
fold oscillation ~e.g., Titze, 1988; Lucero, 1993, 1995; Stei-
necke and Herzel, 1995!. Thus Eqs.~4! and ~8! become

PL5
ktru

2

2a2
2 1

12mL2Tu

a3
, ~9!

Pg5
ru2

2a2
2 S 12

a2
a1

D1
6mL2Tu

a3
. ~10!

The dynamics of the vocal folds is therefore expressed
by Eqs.~1!, ~9!, and~10!, together with the equations for the
glottal areas

a152L~j01j1tj̇ !, ~11!

a252L~j01j2tj̇ !, ~12!

a52L~j01j!, ~13!

where j0 is the prephonatory displacement~equal for the
upper and lower edges!, and

t5T/2c ~14!

is the time delay of the surface wave from the lower edge of
the vocal folds to the midpoint of the glottis or from the
midpoint to the upper edge, andc is the surface wave veloc-
ity.

II. THRESHOLD CONDITIONS

A. Large glottal area

The oscillation threshold condition represents the pa-
rameters at which the equilibrium position of the vocal folds
becomes unstable.

When the glottal area is large, the pressure loss for glot-
tal viscous resistance is small and the viscous terms in Eqs.
~9! may be neglected. Solving for the volume flow velocityu
we obtain

u5a2A2PL /ktr. ~15!

Introducing this expression into Eq.~10!, it becomes

FIG. 1. Vocal fold model. Broken line: prephonatory position.T: vocal fold
thickness.L: vocal fold length.j0: prephonatory displacement.j: displace-
ment at the midpoint of the vocal fold~Titze, 1988!.
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Pg5
PL

kt
S 12

a2

a1
D 1

6mL2Ta2

a3
A2PL

ktr

5S PL

kt
D 2tj̇

j01j1tj̇
1
3mT~j01j2tj̇ !

2~j01j!3
A2PL

ktr
~16!

@note that the viscous term in Eq.~10! may be not neglected,
because the first term can be smaller depending on the values
of a1 anda2, e.g., it is zero fora15a2#.

The equilibrium position of the vocal fold is determined
by setting to zero the time derivatives in Eqs.~1! and ~16!,
with the result

K j̄5
3mT

2~j01 j̄ !2
A2PL

ktr
, ~17!

wherej̄ denotes the equilibrium displacement.
The threshold condition is obtained next linearizing Eq.

~16! aroundj5j̄, j̇50, which yields the linear equation of
motion

Mẍ1S B2
]Pg

]j̇
~ j̄,0!D ẋ1S K2

]Pg

]j
~ j̄,0!D x50, ~18!

where x5j2 j̄ is a small deviation from the equilibrium,
and setting the coefficient ofj̇ ~the effective damping! equal
to zero~Titze, 1988; Lucero, 1995!; i.e., at threshold

B5
]Pg

]j̇
~ j̄,0!. ~19!

From Eq.~16! we have

]Pg

]j̇
~ j̄,0!5

2tPL

kt~j01 j̄ !
2

3mTt

2~j01 j̄ !3
A2PL

ktr
~20!

and introducing this equation into Eq.~19! and solving for
PL , we obtain

Pth5S 3mT

8~j01 j̄ !2
A 2

ktr

1A 9m2T2

32ktr~j01 j̄ !4
1
ktB~j01 j̄ !

2t
D 2, ~21!

wherePth denotes the threshold value of the lung pressure.
When the prephonatory displacementj0 is large, then

the viscous terms in Eq.~21! may be neglected. Also, from
Eq. ~17! we see that the equilibrium displacementj̄ becomes
smaller asj0 increases, and may also be neglected forj0
large enough. In this case, Eq.~21! may be simplified to

Pth5ktBj0/2t, ~22!

which is the equation for the threshold pressure obtained by
Titze ~1988!. We can see that the threshold pressure in-
creases linearly withj0.

As thej0 reduces, the viscous terms in Eq.~21! become
dominant. Sincej0 appears in their denominators, then the
threshold pressure will eventually reach a minimum and will
increase for lower values ofj0. It seems difficult to obtain an

analytical expression for the value ofj0, wherePth takes its
minimum; note that the equilibrium displacementj̄ in Eq.
~21! is also a function ofj0 and PL , as expressed by Eq.
~17!. The minimum in relation to~j01j̄! its easier to obtain,
setting to zero the derivative ofPth in relation to~j01j̄! and
solving, with the result

j01 j̄5A5 27tm2T2/2rB. ~23!

The value ofj0 in Eq. ~23! represents then the optimal
glottal width for ease of phonation. It decreases when the
vocal fold dampingB is increased, in agreement with the
experimental results presented by Titzeet al. ~1995!.

B. Small glottal area

Whenj0 is even closer to zero, the viscous term in Eq.
~9! becomes larger than the first term~note that the former is
proportional toa23, whereas the latter is proportional to
a2

22!, which may be then neglected. Solving for the volume
flow velocity u we now obtain

u5PLa
3/12mL2T ~24!

and introducing this result into Eq.~10!

Pg5
rPL

2a6

288m2L4T2a2
2 S 12

a2

a1
D 1

PL

2

5
rtPL

2j̇~j01j!6

9m2T2~j01j2tj̇ !2~j01j1tj̇ !
1
PL

2
. ~25!

As before, we determine first the equilibrium displacement
setting the time derivatives to zero, with the result

j̄5PL/2K. ~26!

From Eq.~26!, we obtain next

]Pg

]j̇
~ j̄,0!5

rtPL
2~j01 j̄ !3

9m2T2
~27!

and the threshold condition becomes

Pth53mTAB/tr~j01 j̄ !3. ~28!

This equation shows that the threshold pressure increases as
j0 becomes close to zero.

III. NUMERICAL EXAMPLES

The plots in Figs. 2 and 3~curve 1! show the values of
the equilibrium displacementj̄ at threshold and the threshold
pressurePL versus the prephonatory displacementj0. They
were obtained approximating first the differential equation
~19! by

B>
Pg~ j̄,Dj̇!2Pg~ j̄,0!

Dj̇
, ~29!

whereDj̇ denotes a small value. The value ofPL which
satisfies this equation was next determined by a standard
numerical method. At the same time, the value of the equi-
librium displacementj̄ needed in the above equation was
obtained solving numerically Eqs.~1!, ~9!, and~10!, with the
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time derivatives equal to zero. The parameters of the model
were given the valuesT50.3 cm,L51.4 cm,c5100 cm/s,
kt51.1, B50.1 N s/m ~Titze, 1988!, r51.14 kg/m3, and
m51.8631025 kg/~s m! ~Ishizaka and Flanagan, 1972!. A
value ofDj̇51023 cm/s was adopted for Eq.~29!.

In Fig. 2 we can see that for large values ofj0 the
equilibrium displacement is close to zero, and increases
monotonically asj0 decreases. This is a consequence of the
viscous term in the glottal pressure, given by Eq.~10!. This
term adds a positive component to the glottal pressure which
tends to push the vocal folds apart, and is in inverse relation
to the glottal area.

In curve 1 of Fig. 3 we can see a nonlinear relation
between the threshold pressure and the prephonatory dis-
placement, with a minimum value for the threshold pressure.
The shape of the curve is identical to those obtained experi-
mentally by Titzeet al. ~1995!. At large values of the pre-
phonatory displacement, the threshold pressure increases al-
most linearly. As the prephonatory displacement decreases,
the slope of the curve reduces and a minimum occurs at

j050.018 cm. It is interesting to note that this value is the
prephonatory displacement adopted for the standard configu-
ration of the two-mass model of the vocal folds~Ishizaka and
Flanagan, 1972!. Below this value the threshold pressure in-
creases as the prephonatory displacement becomes closer to
zero.

Values obtained using the various expressions derived
above were also plotted in Fig. 3, as an internal validation of
the analysis. Curve~2! was obtained solving Eqs.~17! and
~21!, which are the approximations for large values ofj0.
Curve ~3! is the linear approximation in Eq.~22!, derived
previously by Titze~1988!. Curve ~4! is the approximation
for j0 close to zero, from Eqs.~26! and ~28!.

We can also see in Fig. 2 that at the minimum threshold
pressure, the equilibrium displacement isj̄50.0012 cm,
much smaller than the prephonatory displacement. The equi-
librium displacement in Eq.~23! may be then neglected to
facilitate the calculations, which results in the simpler ex-
pression for the optimal prephonatory displacement.

j0>A5 27tm2T2/2rB. ~30!

Using the above values, we obtain from this equation
j050.014 cm, close to the value obtained by numerical tech-
nique.

IV. CONCLUSION

This analysis tends to show that viscous pressure losses
at the glottis are important for describing the nonlinear rela-
tion between the phonation threshold pressure and prephona-
tory glottal width found by Titzeet al. ~1995!. A more ex-
tensive study of the threshold condition would be interesting
as a next step, considering the general case of convergent
and divergent glottal shapes and more detailed flow models
including flow inertia and flow separation effects, as sug-
gested by one of the reviewers of this Letter.
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FIG. 2. Equilibrium displacement at the phonation threshold pressure versus
prephonatory displacement.

FIG. 3. Phonation threshold pressure versus prephonatory displacement.
Curve 1: numerical solution of Eq.~19!. Curve ~2!: approximation in Eqs.
~17! and ~21!. Curve ~3!: linear approximation in Eq.~22!. Curve ~4!: ap-
proximation in Eqs.~26! and ~28!.
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