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Recent experimental measurements have shown a nonlinear relation between the phonation
threshold pressure and the prephonatory glottal width, with a minimum for the threshold pressure
which would indicate the existence of an optimal glottal width for ease of phonftidh Titze

et al, J. Acoust. Soc. Am97, 3080—3084(1995]. This relation is studied analytically using a
simplified vocal fold model which includes an explicit term for the air pressure losses due to glottal
viscous resistance. It is shown that the observed nonlinearity may be a consequence of the viscous
pressure losses, which cause an increase of the threshold pressure at small values of the
prephonatory glottal width. ©1996 Acoustical Society of America.

PACS numbers: 43.70.Aj, 43.70.BRL ]

INTRODUCTION glottal viscous resistance, which was not considered in the
. . ._previous analyses. Note that the difference between the ana-
The phonation threshold pressure, defined as the min y

. e . lytical prediction and the experimental result appears at low
mum lung pressure required to initiate the vocal fold OSCI|—y P P bp

] Lo " values of the glottal width, precisely where pressure losses
lation, has been studied in recent works from both theoretlc% g b y P

: ; . y viscous resistance become significant; hence, a relation
and expermental approacheistze, 1988.’ 1989, 1992.; Tltz_e between them is possible. We will thus extend Titze's analy-
etal, 1995; Lucero, 1995 An anglytlcal expression In - ;g including a viscous resistance term in his equations, and
terms of the gIott.aI geometry and. biomechanical parameters,, then re-examine the threshold condition.
was derived by Titz€1988, assuming a surface wave propa-
gating through the cover of the vocal folds and small-| \ocaL FOLD MODEL
amplitude conditions. The expression predicted a linear in-
crease of the threshold pressure with the prephonatory glottal  The vocal fold model is shown in Fig. [Titze, 1988.
width. Its validity was later tested in experimental measure-The vocal fold body is stationary, and the cover propagates a
ments by Titzeet al. (1995 on a physical model of the vocal Surface wave in the direction of the airflow. Assuming a
fold mucosa, where the air pressure to initiate the mucos&mall time delay of the surface wave in moving from the
oscillation was measured for various glottal conditions. Thdower to the upper edges of the vocal fold, and lumping the
results confirmed in general the analytical predictions; howbiomechanical properties of the vocal fold at the midpoint of
ever, it was found that the threshold pressure did not dethe glottis, we obtain the equation of motion

crease to zero as t_he glo'Fta_lI width was r_e_duced. Instgad, a ME+B€+K§= Py, 1)
nonlinear relation with a minimum at a positive glottal width
was observed. whereM, B, andK are the lumped effective mass, damping,

Since the threshold pressure may be considered as and stiffness per unit area of the cover, respectivglg, the
measure of ease of phonation, a minimum value would meal@teral displacement of the cover at the midpoint, &hgdis
the existence of an optimal glottal widthe., a glottal width ~ the glottal pressure acting on the vocal f¢ldtze, 1988.

at which the effort required to initiate phonation is mini- In his analysis, Titze considered for the transglottal pres-
mur), as noted by Titzest al. (1995. A possible explana- sure the expression
tion for the nonlinear relation between threshold pressure P.— P,=k,pu2/2a2, @)

and glottal width was offered in their paper, attributing it to

a glottal closure in part of the oscillatory cycle. However, wherePy is the subglottal pressur®; is the pressure at the
since the vocal folds are separated at the start of their oscikocal tract input,kt is an empirical coefficient related to
lation, the threshold condition could not be influenced bykinetic pressure losses for the formation of a vena contracta
glottal closure. Mathematically, the oscillation threshold cor-at the glottal entry and turbulent pressure recovery at the
responds to a Hopf bifurcation, at which a stable equilibriumglottal exit, p is the air densityu is the air volume flow
position becomes unstable and a limit cycle is producedelocity, anda, is the glottal area at the upper edge of the
(Lucero, 1993 Since the stability properties of an equilib- vocal fold. The glottal viscous resistance was considered to
rium position are determined only by local conditigis., in ~ be part of the coefficierk; .

small neighborhood of the equilibrium positigrthe oscilla- Here we will add an explicit term for the viscous resis-
tion threshold must be described only by the open glottigance. From experimental measurements on a cast model of

dynamics. Thus an alternative explanation must be sought.the larynx at steady flow condition, van den Beegal.
In this Letter we will investigate the influence of the (1957 observed a good agreement between the measured

viscous pressure loss and the Poiseuille formula
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wherea, is the glottal area at the lower edge of the vocal
fold. Introducing Eqgs(6) and(7) into Eq. (5) and integrat-
ing, we obtain

6uL%Tu

2
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The above equations may be simplified further assuming
as in Titze(1988 that the subglottal pressuf, is constant
trachea and equal to the lung pressupg , the vocal tract input pres-
sure is equal to the atmospheric press(Pe=0), and the
supraglottal area is large compared wéh, which implies
FIG. 1. Vocal fold model. Broken line: prephonatory positidnvocal fold ~ P,=P; . The first two assumptions neglect the loading effect
thicknessL: vocal fold length.&: prephonatory displacemerg. displace-  of the subglottal system and the vocal tract, and might seem
ment at the midpoint of the vocal fokTitze, 1988. a crude approximation. They are introduced to eliminate pa-
rameters and reduce the model to the basic vocal fold dy-

wherep is the air viscosityl is the vocal fold lengthT is it namics,'fol!owing preyious analytical studies of the vocgl
thickness, and is the glottal area, which was constant alongfold oscillation (e.g., Titze, 1988; Lucero, 1993, 1995; Stei-

the direction of the airflow. necke and Herzel, 1995Thus Eqs(4) and (8) become
In our model the glottal area varies in time and along the kppu?  12uL2Tu
glottis; it is not clear how Eq(3) should be modified for P.= a2 . 9
these conditions. We assume first a rectangular prephonatory 2
glottis, i.e., a constant glottal area along the airflow direction. pu? a,| 6uL?Tu
Note that the experimental results obtained by Titel. PQZE - a_1 a3 (10
2

(1995 were also obtained with a rectangular prephonatory
glottis. We also assume small amplitude oscillations, since  The dynamics of the vocal folds is therefore expressed
we are interested only in the threshold conditions. Undeby Egs.(1), (9), and(10), together with the equations for the
these assumptions, the glottis is approximately rectangulaglottal areas

during the vocal fold oscillation; we will use then E@®) as

an approximation taking the glottal araaas the area at the a1=2L(&o+ &+ 78), (12)
midpoint of the glottis. Equatio2) is hence modified to a,=2L (&t E— 7_'5) (12)
kipu?  12ul?Tu -
P—P,= ;pz Lot — (4) a=2L(&+¢), (13
as a

where &, is the prephonatory displacemetgqual for the
The glottal pressur®, acting on the vocal folds is next upper and lower edggsand
calculated as the mean glottal pressure along the glottis

(Titze, 1988 T=Ti (14
is the time delay of the surface wave from the lower edge of
p :} JT’Z P(2)dz 5) the vocal folds to the midpoint of the glottis or from the
T )t ' midpoint to the upper edge, amds the surface wave veloc-

ity
whereP(2) is the intraglottal pressure, and the origin of the
z axis has been taken at the midpoint of the glottis. The

intraglottal pressure may be expressed by
Il. THRESHOLD CONDITIONS

2
a;
(6) A. Large glottal area

~a%(2)

12ul?u(T/2—2)
as ’

P P+pU2
z)= —
(D=Pot 5oz

1

The oscillation threshold condition represents the pa-

where P, is the exit pressuréTitze, 1988 anda(z) is the  rameters at which the equilibrium position of the vocal folds

intraglottal area. The last term was added to the originabecomes unstable.

equation in Titze’s paper assuming that the viscous losses When the glottal area is large, the pressure loss for glot-

vary linearly along the glottignote in Eq.(3) that the vis- tal viscous resistance is small and the viscous terms in Egs.

cous losses are proportional to the glottal thickriEks (9) may be neglected. Solving for the volume flow veloaity
The assumption of a small time delay for the surfacewe obtain

wave plus a linear variation of the prephonatory glottal area N =

along the glottis implies a linear variation along the glottis u=2a,v2P7kip.

also for the time-varying glottal arghucero, 1995, i.e., Introducing this expression into E¢L0), it becomes

(15
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2 / analytical expression for the value &f, wherePy, takes its
|:>g=ﬂ ( 1— i + 6“"—3-“&2 & minimum; note that the equilibrium displacemehtn Eq.
Kt ag a Kep (21) is also a function ofs, and P, , as expressed by Eq.
. . (17). The minimum in relation t@é&,+¢) its easier to obtain,
:<ﬂ) 27§ 4 B3puT(fot £ 78) \ /ﬂ (16) setting to zero the derivative &, in relation to(&+¢) and
ki | Eot &+ TE 2(&0+€)3 kip solving, with the result

[note that the viscous term in EGLO) may be not neglected, Eo+ E=R2Tr%T?12pB. (23
because the first term can be smaller depending on the values
of a; anda,, e.g., it is zero fora;=a,].

The equilibrium position of the vocal fold is determine
by setting to zero the time derivatives in E¢$) and (16),
with the result

The value ofg&, in Eq. (23) represents then the optimal

d glottal width for ease of phonation. It decreases when the
vocal fold dampingB is increased, in agreement with the
experimental results presented by Titgeal. (1995.

—  3uT 2P, B. Small glottal area
Ké=——— \[-— (7

2(&t+ £)? kp When &, is even closer to zero, the viscous term in Eq.
(9) becomes larger than the first tefrote that the former is
proportional toa 3, whereas the latter is proportional to
a,?), which may be then neglected. Solving for the volume
flow velocity u we now obtain

Wheref_denotes the equilibrium displacement.
The threshold condition is obtained next linearizing Eq.
(16) aroundé=¢, £€=0, which yields the linear equation of

motion
u=P a%12ul?T (24)
Py — Py —
Mx+| B— —= (g,O))kJr K——2 (g,o))x=o, (18)  and introducing this result into E410)
13 J
—. - I pPa® az| P
where x=¢— ¢ is a small deviation from the equilibrium, Pomr s | |+
and setting the coefficient af (the effective dampingequal 288u°L"T a; a;/ 2
to zero(Titze, 1988; Lucero, 1995i.e., at threshold :
_ pTPlE(&0+8)° LP 5
8=""9 zo). (19 QT bo+ =78 (b E478) 2
2 As before, we determine first the equilibrium displacement
From Eq.(16) we have setting the time derivatives to zero, with the result
Py —  2:P  3uTr _ [2p, §=PU2K. (26)
c?_é (6,0 = kt(§0+5 2(§0+53 kt_P (20 From Eq.(26), we obtain next
and introducing this equation into E¢L9) and solving for Py (5_0)= prPZ(&p+6)° o
P,_, we obtain o 9u2T?
3uT [ 2 and the threshold condition becomes
8(&ot+ ) Vkp Pi=3uTVB/7p( &+ £)°. (28)
9u2T? ktB(§0+5 2 This equation shows that the threshold pressure increases as
— + , (21) & becomes close to zero.
32%ip(&o+ ) 27

wherePy, denotes the threshold value of the lung pressure.lll. NUMERICAL EXAMPLES
When the prephonatory displacemefjtis large, then
the viscous terms in Eq21) may be neglected. Also, from
Eq. (17) we see that the equilibrium displacemégrttecomes
smaller asg, increases, and may also be neglected &pr
large enough. In this case, E@1) may be simplified to

Pin=kBé&o/27, (22

The plots in Figs. 2 and &urve 1 show the values of
the equilibrium displacemeigtat threshold and the threshold
pressureP, versus the prephonatory displacemént They
were obtained approximating first the differential equation
(19) by

o _ _ Py(§,48)—Py(£,0)
which is the equation for the threshold pressure obtained by B= A ' (29)
Titze (1988. We can see that the threshold pressure in- ) 3
creases linearly witlg,. where A¢ denotes a small value. The value Bf which

As the &, reduces, the viscous terms in Eg1) become satisfies this equation was next determined by a standard
dominant. Sinceg, appears in their denominators, then thenumerical method. At the same time, the value of the equi-
threshold pressure will eventually reach a minimum and willlibrium displacement needed in the above equation was

increase for lower values @. It seems difficult to obtain an obtained solving numerically Eqgél), (9), and(10), with the
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0.008 &=0.018 cm. It is interesting to note that this value is the
prephonatory displacement adopted for the standard configu-
ration of the two-mass model of the vocal foldshizaka and
Flanagan, 1972 Below this value the threshold pressure in-
creases as the prephonatory displacement becomes closer to
Zero.

Values obtained using the various expressions derived
above were also plotted in Fig. 3, as an internal validation of
the analysis. Curvé2) was obtained solving Eq$17) and
(21), which are the approximations for large values&f
Curve (3) is the linear approximation in Eq22), derived
previously by Titze(1988. Curve (4) is the approximation
0 . 008 o1 for &, close to zero, from Eqg26) and (28).

' ' We can also see in Fig. 2 that at the minimum threshold
pressure, the equilibrium displacement §s=0.0012 cm,
FIG. 2. Equilibrium displacement at the phonation threshold pressure versudiuch smaller than the prephonatory displacement. The equi-
prephonatory displacement. librium displacement in Eq(23) may be then neglected to
facilitate the calculations, which results in the simpler ex-

time derivatives equal to zero. The parameters of the moddl"€ssion for the optimal prephonatory displacement.
were given the value$=0.3 cm,L=1.4 cm,c=100 cm/s, £0=R/27Tu?T?/2pB. (30)
k,=1.1, B=0.1 N s/m (Titze, 1988, p=1.14 kg/mi, and

u=1.86x10"° kgl(s m) (Ishizaka and Flanagan, 1972\ Using the above values, we obtain from this equation
value ofA'§:10*3 cm/s was adopted for EG29). ' £=0.014 cm, close to the value obtained by numerical tech-

nique.

0,004

E(em)

o (cm)

In Fig. 2 we can see that for large values &f the
equilibrium displacement is close to zero, and increaseﬁ/_ CONCLUSION
monotonically as&, decreases. This is a consequence of the . ) ]
viscous term in the glottal pressure, given by Etp). This This analysis tends to show that viscous pressure losses
term adds a positive component to the glottal pressure whicft the glottis are important for describing the nonlinear rela-

tends to push the vocal folds apart, and is in inverse relatioHon between the phonation threshold pressure and prephona-
to the glottal area. tory glottal width found by Titzeet al. (1995. A more ex-

In curve 1 of Fig. 3 we can see a nonlinear relationt€nsive study of the threshold condition would be interesting

between the threshold pressure and the prephonatory di@S & next step, considering the general case of convergent
placement, with a minimum value for the threshold pressure2nd divergent glottal shapes and more detailed flow models
The shape of the curve is identical to those obtained experincluding flow inertia and flow separation effects, as sug-
mentally by Titzeet al. (1995. At large values of the pre- 9ested by one of the reviewers of this Letter.

phonaftory displacement, the threshol_d pressure increases %\ICKNOWLEDGMENTS

most linearly. As the prephonatory displacement decreases,

the slope of the curve reduces and a minimum occurs at his research was supported by Grant No. 300587/93-7
of the National Council of Scientific and Technological De-

velopment(CNPg of Brazil.
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