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The dynamics of the two-mass model of the vocal fold oscillation is analyzed. It is shown that the
oscillation may occur around two equilibrium positions, and that each case presents similar features
as the chest and falsetto registers, suggesting a relation between them. The switch between
equilibrium positions is caused by a transcritical bifurcation phenomenon. ©1996 Acoustical
Society of America.
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INTRODUCTION

The nonlinear dynamics of the vocal fold oscillation was
analyzed in a previous work using a simplified version of the
two-mass model~Lucero, 1993!. Two equilibrium positions
besides the rest position were found for the vocal folds, and
a bifurcation diagram was derived for the case of a rectan-
gular glottis at the rest position. It was shown that the oscil-
lation region is divided into two subregions by a transcritical
bifurcation, and that in each subregion the oscillation occurs
around different equilibrium positions. These results were a
novel finding for the oscillation dynamics, and have been
confirmed in later works~Steinecke and Herzel, 1995!. How-
ever, their meaning in terms of phonation has not been clari-
fied yet.

In this paper we will present further analytical results
which suggest that each of the subregions of oscillation
could be associated to a different vocal register, chest and
falsetto.

Let us briefly recall that the vocal fold may be divided
into two loosely coupled layers with different mechanical
properties: body and cover~Titze, 1988, 1994; Story and
Titze, 1995!. The body consists of muscle and deep layers of
the vocal ligament and forms the bulk of the fold, whereas
the cover consist of the more superficial tissues around the
body. During the oscillation, the body undergoes lateral mo-
tion, and the cover propagates a surface wave in the direction
of the airflow. The combined motion of body and cover may
be also regarded as a lateral oscillation of the vocal folds
with a vertical phase difference, or time delay from the bot-
tom to the top of the fold.

In normal phonation at the chest register, the stiffness of
the body of the vocal folds is much larger than the stiffness
of the cover. The oscillation occurs with large amplitude and
vertical phase difference, collision between the opposite vo-
cal folds, and a near rectangular or even divergent glottal
shape. In the falsetto register, on the other hand, the stiffness
of the cover becomes larger and in the order of the body
stiffness. In this case the oscillation is nearly sinusoidal with-
out fold collision and a small phase difference, and with a
convergent glottal shape~Titze, 1994!.

We will show in the following analysis that the oscilla-
tion of the two-mass model around each equilibrium position
presents the same features as the vocal registers, which sug-
gests a relation between them.

I. THE TWO-MASS MODEL

The two-mass of model of the vocal folds is schemati-
cally shown in Fig. 1~Ishizaka and Flanagan, 1972!. Each
vocal fold is divided into two single mechanical oscillators
coupled through a spring. In the standard configuration, the
lower mass is taken thicker and more massive than the upper
one, and with a higher stiffness coefficient, as an attempt to
represent the effect of the body. Note that the standard values
for the lower and upper masses and stiffnessesm150.125 g,
m250.025 dyn/cm,k1580 000 dyn/cm, andk258000 dyn/
cm, are close to and keep the same ratio as those derived by
Story and Titze~1995! from experimental results for the
body and cover,mbody50.05 g,mcover50.01 g,kbody>50 000
dyn/cm, andkcover>5000 dyn/cm. We will then assume that
the mechanical properties of the body and cover are roughly
represented by the parameters of the lower and upper oscil-
lators, respectively.

As in the previous work, we neglect nonlinearities in the
biomechanical properties of the tissues and the influence of
the vocal tract and subglottal system. A further simplification
of the glottal aerodynamical equations is introduced here,
assuming Bernoulli flow below the glottal constriction, and a
free downstream jet above it~Steinecke and Herzel, 1995;
Story and Titze, 1995!. With these assumptions, the equa-
tions of motion are

m1ẍ11r 1ẋ11s11kc~x12x2!5F1 ,
~1!

m2ẍ21r 2ẋ21s21kc~x22x1!50,

wherexi ~i51,2! is the displacement of massmi from its rest
position, r i is the damping coefficient,kc is the coupling
stiffness,si is the elastic restoring force,

si5 H kixi , for xi.2xi0
kixi1hi~xi1xi0!, for xi<2xi0

~ i51,2!, ~2!

whereki is the stiffness coefficient,hi is the extra stiffness
coefficient introduced by the collision between the opposite
folds,xi52xi0 is the mass displacement where collision oc-a!Electronic mail: lucero@cic.unb.br
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curs, andF1 is the aerodynamic force on massm1

F155
d1l gPsS 12

~x21x20!
2

~x11x10!
2D , for x1>x2 ,x1.2x10,

x2.2x20,

d1l gPs , for x1.2x10,x2<2x20,

0, otherwise,
~3!

whered1 is the width of massm1, l g is its length, andPs is
the subglottal pressure.~A constant pressure equal toPs is
assumed to act onm1 when collision occurs atm2.!

For an oscillatory solution to build up from the rest po-
sition, the glottis at rest must be convergent, i.e.,x10.x20.
Otherwise, the forceF1 will be zero at the rest position, and
the trivial solutionx150, x250, will be a solution of Eq.~1!.

II. EQUILIBRIUM POSITIONS

The equilibrium positions appear only in the open glottis
conditionx1.2x10,x2.2x20. They may be determined set-
ting the time derivatives to zero in the equations of motion
~1!, and solving forx1 and x2. Two cases must be consid-
ered: Assuming a rectangular or convergent glottis at equi-
librium (x1>x2), we arrive at the simultaneous equations

x25ax1 , ~4!

~k11ak2!~x11x10!
32@x10~k11ak2!1d1l gPs

~12a2!] ~x11x10!
222ad1l gPs~ax102x20!~x11x10!

1d1l gPs~ax102x20!
250, ~5!

wherea is the coupling coefficient

a5kc /~k21kc!. ~6!

Second, assuming a divergent glottis at equilibrium
(x1,x2), then the forceF1 is zero and the rest position is the
only equilibrium position.

The simpler case of a rectangular glottis at the rest po-
sition, x105x205x0 was analyzed in our previous work
~Lucero, 1993! and also by Steinecke and Herzel~1995!. The
main results will be reviewed next, for clarity. In this case,
Eq. ~5! simplifies to

x1@~k11ak2!~x11x10!
22d1l gPs~12a2!~x11x10!

2d1l gPsx0~12a!2#50. ~7!

This equation has three solutions:x1 5 0, a second one where
x1>2x0 , and a third one wherex1<2x0 . The third solu-
tion does not satisfy the open glottis condition and is hence
invalid ~in Lucero, 1993, a small region where this third
solution appeared within the open glottis condition was
found. The difference with the present result is caused by the
assumption of a free jet above the glottal constriction
adopted here. See also Steinecke and Herzel, 1995!. Apply-
ing next Eq. ~4! to the first two solutions, we obtain the
coordinates for the equilibrium positions.

From the first solution we obtainx1 5 0 andx2 5 0,
which is the rest position of the vocal folds.

Note that Eq. ~6! implies that 0<a,1, and hence
ux2u<ux1u ~the equality holds fora50!. Since Eq.~7! holds
only for a rectangular or convergent glottis at equilibrium,
then the second equilibrium position must satisfy the condi-
tion x1>x2.0, i.e., at the second equilibrium position the
glottis is in general wider than at rest, and convergent.

The two equilibrium positions may become coincident at
x150,x250. Introducing these values in the second factor of
Eq. ~7!, we obtain

Ps5
x0

2d1l g
S k11kc1

k1kc
k2

D . ~8!

The stability of each equilibrium position may be deter-
mined next by linearizing the equations of motion around
each equilibrium position, and studying the roots of the as-
sociated characteristic equations. It was shown~Lucero,
1993! that the oscillation region is delimited by two Hopf
bifurcations, each one involving a different equilibrium po-
sition. Further, the oscillation region is divided into two sub-
regions by a transcritical bifurcation, given by Eq.~8!; in
each subregion, the oscillation takes place around a different
equilibrium position.

We will examine here the effect of the stiffnessk2 on the
equilibria discussed above and on their stability. Figure 2

FIG. 1. Two-mass model.

FIG. 2. Coordinatex1 of the equilibrium positions versusk2 for a rectangu-
lar glottis, andkc51000 dyn/cm~curve 1!, 5000 dyn/cm~curve 2!, and
10 000 dyn/cm~curve 3!. The equilibrium position at the rest position is
located at thex axis ~x150!. The value ofk2crit at which the transcritical
bifurcation occurs has been indicated.
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shows thex1 coordinate of the equilibrium positions versus
k2, for k1580 000 dyn/cm,Ps58000 dyn/cm2, l g51.4 cm,
d150.25 cm,x050.02 cm ~Ishizaka and Flanagan, 1972!,
and kc as parameter. Below a certain value ofk2 ~we will
denote this value byk2crit! there is only one equilibrium
value ofx1 ~x150!, and above that value a second solution
besidesx150 appears. The value ofk2crit is the transcritical
bifurcation given by Eq.~8!.

Figure 3 shows results for a slightly convergent glottis,
with x1050.02 cm andx2050.0199 cm. All theother pa-
rameters in the model were the same as those used in Fig. 2.
In this case, the equilibrium positions were calculated di-
rectly from Eqs.~4! and~5!. Equation~4! has three solutions,
however only one of them satisfies the conditionx1>x2>0.
We have then only one equilibrium position and conse-
quently no transcritical bifurcation; however, the curves have
equivalent shapes to those in Fig. 2. The values ofk2crit cal-
culated for Fig. 2 have been also indicated for reference.
Note that belowk2crit the equilibrium position is close to the
rest position, and above it becomes farther ask2 increases.

We may define the glottal convergence angle as

u5tan21@~x12x2!/d#5tan21@x1~12a!/d#, ~9!

whered is the total vocal fold thickness. Then, we have that
ask2 increases,x1 increases as shown in Figs. 2 and 3, and at
the same timea decreases@see Eq.~6!#. Both variations con-
tribute to increase the glottal convergence angle.

III. DISCUSSION CONSIDERING VOCAL REGISTERS

According to these results, the oscillation region is di-
vided into two subregions: When the cover stiffnessk2 is
lower than the transcritical valuek2crit, the oscillation takes
place around an equilibrium position in which the glottis is
rectangular or slightly convergent. Above the transcritical
value k2crit, the equilibrium position switches to a different

location where the glottis is wider and more convergent. The
switch between the equilibrium positions becomes more
abrupt at lower values of the coupling stiffnesskc .

Considering the characteristics of the chest and falsetto
registers mentioned in the introductory section, we could as-
sociate the subregionk2,k2crit to the chest register, and
k2.k2crit to the falsetto.

Let us consider how the switch between registers may
occur. The stiffness of the vocal folds is controlled mainly by
action of the crycothyroid~CT! and the thyroarytenoid~TA!
muscles~Titze et al., 1988; Titze, 1994!. Contraction of the
CT muscle stretches the whole vocal fold stiffening both the
cover and the body. On the other hand, contraction of the TA
muscle tends to shorten the folds slackening the cover while
imposing an internal stress on the body. Hence, the action of
the CT and TA might be regarded as differential on the
cover, and additive on the body. We will simply express the
body stiffness ask15CT1TA, and the cover stiffness as
k25CT2TA ~CT and TA would represent some weighted
measure of the muscle activities!. At phonation in the chest
register, the activity of the TA is relatively high, whereas the
activity of the CT is relatively low. This combination would
result in a high value fork1 and a low value fork2, lower
than the critical valuek2crit, and the vocal fold oscillation
would occur around the rest position. At the falsetto register,
the TA muscle is deactivated, and the contraction of the CT
is large. Both effects would increasek2 to a value higher than
k2crit, and the oscillation would occur around the second
equilibrium position, in a wider and convergent glottis.

Numerical solutions of Eq.~1! for each subregion are
shown in Figs. 4 and 5, whereai52l g(xi1xi0), i51,2, is
the glottal area.

Figure 4~a! shows the result fork1580 000 dyn/cm,
k25500 dyn/cm,kc55000 dyn/cm,m150.125 g,m250.025
g,z150.1,z2 5 0.6(r i 5 2z iAmiki), l g51.4 cm,d150.25 cm,
x1050.02 cm,x2050.0199 cm, andPs58000 dyn/cm2. Ex-
cept fork2 andkc , this is the standard configuration of the
two-mass model~Ishizaka and Flanagan, 1972!. kc was
given a low value for a more abrupt effect in the equilibrium
position switch, andk2 was selected lower than the transcriti-
cal valuek2crit52051 dyn/cm, calculated from Eq.~8!. The
equilibrium position calculated from Eqs.~4! and ~5! is
x150.00049 cm,x250.00044 cm, with a slightly convergent
glottis. If we calculate the medial position of the vocal folds
from the plot, we obtainx150.015 cm,x250.019 cm, with a
divergent glottis. The difference between these results is a
consequence of the nonlinearity of the equations. The oscil-
lation frequency isf599 Hz. The plot also shows collision
between the vocal folds, and a large phase difference of
w5147°. All these features correspond to a chest-like oscil-
lation.

In ~b! the cover stiffness was increased tok2520 000
dyn/cm, higher than the transcritical value and hence within
the region associated with the falsetto, representing a simul-
taneous deactivation of the TA muscle and large contraction
of the CT. This value ofk2 was taken near the higher limit
for the oscillation region~i.e., the rest position becomes
stable at higher values ofk2!. The body stiffnessk1 was kept
at the same value as in~a!. In this case, the equilibrium

FIG. 3. Coordinatex1 of the equilibrium position versusk2 for a slightly
convergent glottis, andkc51000 dyn/cm~curve 1!, 5000 ~curve 2!, and
10 000 dyn/cm~curve 3!. There is no equilibrium position at the rest posi-
tion, and hence no transcritical bifurcation. The value ofk2crit from Fig. 1
has been indicated, as reference.

3357 3357J. Acoust. Soc. Am., Vol. 100, No. 5, November 1996 Jorge C. Lucero: Chest- and falsetto-like oscillations



position isx150.022 cm,x250.0045 cm, which corresponds
to a glottis wider and more convergent than in the previous
plot. The medial position isx150.015 cm,x250.0030 cm.
The frequency isf586 Hz, there is no fold collision, and the
phase difference decreased tow545°. Except for the fre-
quency decrease, this example may be considered as a
falsetto-like oscillation.

The transition to the falsetto register is normally associ-
ated with a frequency jump, instead of the decrease shown in
~b!. However, note that all the parameters exceptk2 were
kept constant. In~c! a more realistic configuration for the
falsetto register is shown. As in Story and Titze~1995!, we
assume that the large CT contraction increases also the body
stiffnessk1, to a valuek15160 000 dyn/cm2. Also,m1 was
reduced tom150.05 g, assuming that the effective oscillating
mass of the body reduces to the ligament only. The cover
stiffnessk2 was also taken near the higher limit for the os-
cillation region, at k2528 000 dyn/cm2. The transcritical
value for k2 in this case isk2crit56956 dyn/cm, hence this
configuration is within the falsetto regionk2.k2crit. We can
see that the oscillation has falsetto-like features, with a fre-
quency jump tof5171 Hz.

The above plots were selected as rather extreme ex-
amples of the oscillation around each equilibrium position.
Note that the large phase difference in Fig. 4~a! results in the
glottis opening twice in each oscillation cycle, which is not
typical of the chest register, as pointed by a reviewer of this
letter. In Fig. 5 another set of plots is shown, using the stan-
dard value forkc525 000 dyn/cm. In~a!, the cover stiffness
was given the standard valuek258000 dyn/cm, which is
lower than the transcritical valuek2crit511428 dyn/cm. The
oscillation is chest-like, with a frequencyf5134 Hz and
phase differencew544°. The equilibrium position is located
at x150.0012 cm,x250.00088 cm. In~b!, k2 was increased
to a valuek2555 000 dyn/cm, higher thank2crit. The oscilla-
tion is falsetto-like, with a frequencyf564 Hz, and phase
difference w513°. The equilibrium position is located at
x150.0142 cm,x250.0044 cm, with a wider and more con-
vergent glottis than in~a!. Finally, a falsetto-like oscillation
with a higher frequency off5274 Hz is shown in~c!. There,
an increase of the body stiffness tok15160 000 dyn/cm and
a decrease of its mass tom150.025 g was assumed. The
cover stiffness was given the valuek2580 000 dyn/cm,

FIG. 4. Numerical solution of Eq.~1! for kc55000 dyn/cm, and~a!
k1580 000 dyn/cm,k25500 dyn/cm,k2crit, m150.125 g, ~b! k1580 000
dyn/cm,k2520 000 dyn/cm.k2crit, m150.125 g, and~c! k15160 000 dyn/
cm, k2528 000 dyn/cm.k2crit, m150.05 g.

FIG. 5. Numerical solution of Eq.~1! for kc525 000 dyn/cm, and~a!
k1580 000 dyn/cm,k258000 dyn/cm,k2crit, m150.125 g,~b! k1580 000
dyn/cm,k2555 000 dyn/cm.k2crit, m150.125 g, and~c! k15160 000 dyn/
cm, k2580 000 dyn/cm.k2crit, m150.025 g.
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which is higher than the transcritical valuek2crit542105 dyn/
cm.

A point of discussion is that, although the chest–falsetto
transition consistently occurs in the frequency range 300–
350 Hz ~Titze, 1994!, the present analysis do not show any
particular relation to those frequencies.

It is to be noted that the above examples are not intended
to simulate closely the chest and falsetto registers, but rather
to show that each of the oscillation subregions have chest-
and falsetto-like characteristics.

IV. CONCLUSION

It has been shown that chest- and falsetto-like oscillation
are obtained when the two-mass model of the vocal folds is
set to oscillate around different equilibrium positions. This
suggests the possibility of associating each vocal register
with a different equilibrium position of the vocal folds. The
switch between registers would thus be caused by a tran-
scritical bifurcation phenomenon.

The results are not conclusive, and have been presented
with the intention of stimulating discussions and further re-
search on the subject. The limitations of the two-mass model
do not permit a more comprehensive treatment of vocal reg-
isters, mainly because of the difficulty in relating the model
parameters to the actual vocal fold physiology. Thus analy-
ses using more elaborated models such as the three-mass
body-cover model of Story and Titze~1995! would be desir-
able as a next step.

One of the reviewers of this letter noted that in a previ-
ous work, Herzel~1993! found a parameter region of coex-
istence of limit cycles in a two-mass model, which could be
related to different vocal registers. However, that region was
small and at the borderline of the region for normal phona-
tion. Further, the model used did not include the formation of

a jet stream above the glottal constriction, or pressure losses
for viscosity. Our results show that the coexistence of differ-
ent limit cycles and other nonlinear phenomena reported in
that paper do not occur when the jet formation or the viscous
losses are incorporated into the model. Therefore, it is not
clear whether those phenomena represent a real feature of the
vocal fold oscillation, or they are just a product of the par-
ticular model used.

We believe that the study of vocal registers from a non-
linear dynamics approach along the above lines~transcritical
bifurcation or coexistent limit cycles! or other alternatives is
interesting and deserves further research.
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