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The dynamics of the two-mass model of the vocal fold oscillation is analyzed. It is shown that the
oscillation may occur around two equilibrium positions, and that each case presents similar features
as the chest and falsetto registers, suggesting a relation between them. The switch between
equilibrium positions is caused by a transcritical bifurcation phenomenonl19@ Acoustical
Society of America.

PACS numbers: 43.70.Aj, 43.70.Bk, 43.753d. ]

INTRODUCTION We will show in the following analysis that the oscilla-
tion of the two-mass model around each equilibrium position

The nonlinear dynamics of the vocal fold oscillation was presents the same features as the vocal registers, which sug-
analyzed in a previous work using a simplified version of thegests a relation between them.
two-mass mode{Lucero, 1993 Two equilibrium positions
bes.ides the rest position were.found for the vocal folds, ang +,= T\Wwo-MASS MODEL
a bifurcation diagram was derived for the case of a rectan-
gular glottis at the rest position. It was shown that the oscil-  The two-mass of model of the vocal folds is schemati-
lation region is divided into two subregions by a transcriticalcally shown in Fig. 1(Ishizaka and Flanagan, 197Zach
bifurcation, and that in each subregion the oscillation occurgocal fold is divided into two single mechanical oscillators
around different equilibrium positions. These results were @oupled through a spring. In the standard configuration, the
novel finding for the oscillation dynamics, and have beerlower mass is taken thicker and more massive than the upper
confirmed in later work$Steinecke and Herzel, 1993How-  one, and with a higher stiffness coefficient, as an attempt to
ever, their meaning in terms of phonation has not been clarirepresent the effect of the body. Note that the standard values
fied yet. for the lower and upper masses and stiffnesags0.125 g,

In this paper we will present further analytical results M,=0.025 dyn/cmk,=80 000 dyn/cm, and,=8000 dyn/
which suggest that each of the subregions of oscillatiortm, are close to and keep the same ratio as those derived by
could be associated to a different vocal register, chest angtory and Titze(19995 from experimental results for the
falsetto. body and covemy,g,=0.05 g,M¢oye=0.01 g,Kpeq =50 000

Let us briefly recall that the vocal fold may be divided dyn/cm, andkc,,.=5000 dyn/cm. We will then assume that
into two loosely coupled layers with different mechanicalthe mechanical properties of the body and cover are roughly
properties: body and coveiTitze, 1988, 1994; Story and represented by the parameters of the lower and upper oscil-
Titze, 1995. The body consists of muscle and deep layers ofators, respectively.
the vocal ligament and forms the bulk of the fold, whereas  As in the previous work, we neglect nonlinearities in the
the cover consist of the more superficial tissues around theiomechanical properties of the tissues and the influence of
body. During the oscillation, the body undergoes lateral mothe vocal tract and subglottal system. A further simplification
tion, and the cover propagates a surface wave in the directioff the glottal aerodynamical equations is introduced here,
of the airflow. The combined motion of body and cover mayassuming Bernoulli flow below the glottal constriction, and a
be also regarded as a lateral oscillation of the vocal folddree downstream jet above (Steinecke and Herzel, 1995;
with a vertical phase difference, or time delay from the bot-Story and Titze, 1995 With these assumptions, the equa-

tom to the top of the fold. tions of motion are
In normal phonation at t_he chest register, the stiffr]ess of MyXq + 1 1Xq + 1+ Ke(X1—X0) = F1,
the body of the vocal folds is much larger than the stiffness 1)

of the cover. The oscillation occurs with large amplitude and ~ MpXp+ 1 2Xo+ S+ Ke(Xo—X1) =0,

vertical phase difference, collision between the opposite VOherex; (i=1,2) is the displacement of mass from its rest
cal folds, and a near rectangular or even divergent 9|°tt%osition, r. is the damping coefficients, is the coupling
shape. In the falsetto register, on the other hand, the Stiﬁne%ﬁiffness,si is the elastic restoring force,

of the cover becomes larger and in the order of the body

stiffness. In this case the oscillation is nearly sinusoidal with- _ | kiXi, for xi>—Xiq (i=12, ©
out fold collision and a small phase difference, and with a b kixi+hi(Xi+Xi0),  for Xj<=—Xio o

convergent glottal shap@itze, 1994. wherek; is the stiffness coefficienty; is the extra stiffness
coefficient introduced by the collision between the opposite
dElectronic mail: lucero@cic.unb.br folds, x;= — X;q is the mass displacement where collision oc-
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FIG. 1. Two-mass model.

curs, andr is the aerodynamic force on masg

(X2 +Xp0)?
d]_'gPS(l—mz), for X1=X9,X1> — X190,
Fi=1 X2 —Xz0,
dllgPS’ for X1>_X10,X2S—X20,

0, otherwise,
()
whered, is the width of massn,, |4 is its length, andP is

the subglottal pressuréA constant pressure equal Ry is
assumed to act om; when collision occurs an,.)
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FIG. 2. Coordinate,; of the equilibrium positions versus, for a rectangu-
lar glottis, andk,=1000 dyn/cm(curve 1, 5000 dyn/cm(curve 3, and
10 000 dyn/cm(curve 3. The equilibrium position at the rest position is
located at thex axis (x;=0). The value ofk,.; at which the transcritical
bifurcation occurs has been indicated.

This equation has three solutioxs:= 0, a second one where
X1=—Xg, and a third one wherg,<—x,. The third solu-
tion does not satisfy the open glottis condition and is hence

For an oscillatory solution to build up from the rest po- invalid (in Lucero, 1993, a small region where this third

sition, the glottis at rest must be convergent, iXgg>Xoq.

solution appeared within the open glottis condition was

Otherwise, the forc&; will be zero at the rest position, and found. The difference with the present result is caused by the

the trivial solutionx;=0, x,=0, will be a solution of Eq(1).

Il. EQUILIBRIUM POSITIONS

The equilibrium positions appear only in the open glottis
conditionXx;> — X1,X,> — X5o. They may be determined set-
ting the time derivatives to zero in the equations of motion
(1), and solving forx; andx,. Two cases must be consid-
ered: Assuming a rectangular or convergent glottis at equ

librium (x;=X,), we arrive at the simultaneous equations
X2: CYX]_, (4)
(Ky+ aky) (X1 + X100 — [ Xq0( Ky + aky)+dql 4P

(1= a?)](Xq+X10)%— 2ad;l 4P aX19— X20) (X1 + X10)

+d;l gPs(aXq9—X20)°=0, )
where « is the coupling coefficient
a=Kk./(ky+kg). (6)

assumption of a free jet above the glottal constriction
adopted here. See also Steinecke and Herzel,)19¢ply-
ing next Eq.(4) to the first two solutions, we obtain the
coordinates for the equilibrium positions.

From the first solution we obtair; = 0 andx, = 0,
which is the rest position of the vocal folds.

Note that Eq.(6) implies that Gsa<1, and hence

i|_x2|$|x1| (the equality holds fow=0). Since Eq.(7) holds

only for a rectangular or convergent glottis at equilibrium,

then the second equilibrium position must satisfy the condi-
tion x;=x,=0, i.e., at the second equilibrium position the

glottis is in general wider than at rest, and convergent.

The two equilibrium positions may become coincident at
Xx;=0X,=0. Introducing these values in the second factor of
Eq. (7), we obtain
Ps

X k. k
O | ky+k.+ ﬁ) )

2d,l, K,

The stability of each equilibrium position may be deter-

Second, assuming a divergent glottis at equilibriummined next by linearizing the equations of motion around
(Xx1<<x5), then the forcd-, is zero and the rest position is the each equilibrium position, and studying the roots of the as-

only equilibrium position.

sociated characteristic equations. It was sho(cero,

The simpler case of a rectangular glottis at the rest po1993 that the oscillation region is delimited by two Hopf
sition, X;9=X,0=Xo was analyzed in our previous work bifurcations, each one involving a different equilibrium po-

(Lucero, 1993 and also by Steinecke and Herz&995. The

sition. Further, the oscillation region is divided into two sub-

main results will be reviewed next, for clarity. In this case,regions by a transcritical bifurcation, given by E®); in

Eq. (5) simplifies to
Xq[ (Kq+ aka) (Xq+X10)2—dy| gPs(1— a?)(Xq+X10)

—dyl gPeXo(1—a)?]=0. (7)
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each subregion, the oscillation takes place around a different
equilibrium position.

We will examine here the effect of the stiffndsson the
equilibria discussed above and on their stability. Figure 2
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location where the glottis is wider and more convergent. The
switch between the equilibrium positions becomes more
abrupt at lower values of the coupling stiffndgs

Considering the characteristics of the chest and falsetto
registers mentioned in the introductory section, we could as-
sociate the subregiok,<Kk,.i to the chest register, and
ky> Kot to the falsetto.

Let us consider how the switch between registers may
occur. The stiffness of the vocal folds is controlled mainly by
action of the crycothyroidCT) and the thyroarytenoi€TA)
muscles(Titze et al,, 1988; Titze, 1994 Contraction of the
CT muscle stretches the whole vocal fold stiffening both the
cover and the body. On the other hand, contraction of the TA
muscle tends to shorten the folds slackening the cover while

—+ ' imposing an internal stress on the body. Hence, the action of
61)\(%) j” 10000 20000 the CT and TA might be regarded as differential on the
kea ke (dyne/cm) cover, and additive on the body. We will simply express the
body stiffness ak,=CT+TA, and the cover stiffness as
FIG. 3. Coordinatex; of the equilibrium position versuk, for a slightly k,=CT-TA (CT and TA would represent some weighted
convergent glottis, antk,=1000 dyn/cm(curve 1, 5000 (curve 2, and — measyre of the muscle activities\t phonation in the chest
10 000 dyn/cm(curve 3. There is no equilibrium position at the rest posi- . . . . .
tion, and hence no transcritical bifurcation. The valuegf;; from Fig. 1 register, the activity of the TA is relatively high, whereas the
has been indicated, as reference. activity of the CT is relatively low. This combination would
result in a high value fok,; and a low value fok,, lower
shows thex, coordinate of the equilibrium positions versus than the critical valueka., and the vocal fold oscillation
kp, for k;=80 000 dyn/cm,P,=8000 dyn/cri, |,=1.4 cm, would occur around the rest position. At the falsetto register,
d;=0.25 cm, x,=0.02 cm (Ishizaka and Flanagan, 1972 the TA muscle is deactivated, and the contraction of the CT
and k. as parameter. Below a certain valuelof (we will IS large. Both effec’Fs wpuld increaketo a value higher than
denote this value by, there is only one equilibrium Kecriv @nd the oscillation would occur around the second
value ofx, (x,=0), and above that value a second solution€quilibrium position, in a wider and convergent glottis.

0.03

0.015

Xt (cm)

besidesx;=0 appears. The value & is the transcritical Numerical solutions of Eq(1) for each subregion are

bifurcation given by Eq(8). shown in Figs. 4 and 5, wher@ = 2 4(X; + Xjo), 1=1,2, is
Figure 3 shows results for a slightly convergent glottis, the 9|.0tta| area.

with x;0=0.02 cm andk,,=0.0199 cm. All theother pa- Figure 4a) shows the result fok,=80 000 dyn/cm,

rameters in the model were the same as those used in Fig. #2=500 dyn/cmk.=5000 dyn/cmm;=0.125 g,m,=0.025
In this case, the equilibrium positions were calculated di-9,£1=0.1,{, = 0.6(r; = 2£;mik;),14=1.4cmd;=0.25cm,
rectly from Egs.(4) and(5). Equation(4) has three solutions, X10=0.02 €mM,X,,=0.0199 cm, and®,=8000 dyn/crA. Ex-
however only one of them satisfies the conditige=x,=0.  cept fork; andKk., this is the standard configuration of the
We have then only one equilibrium position and consetwo-mass model(Ishizaka and Flanagan, 197%. was
quently no transcritical bifurcation; however, the curves havediven a low value for a more abrupt effect in the equilibrium
equivalent shapes to those in Fig. 2. The valuek.,gf; cal- position switch, andk, was selected lower than the transcriti-
culated for Fig. 2 have been also indicated for referencecal valuek,.;=2051 dyn/cm, calculated from E¢8). The
Note that belowk,.; the equilibrium position is close to the equilibrium position calculated from Eqg4) and (5) is
rest position, and above it becomes farthekamcreases.  X;=0.00049 cmx,=0.00044 cm, with a slightly convergent
We may define the glottal convergence angle as glottis. If we calculate the medial position of the vocal folds
_ _ from the plot, we obtairx;=0.015 cmx,=0.019 cm, with a
f=tan " (x;~xp)/d]=tan " xy(1-a)/d], ©) divergent glottis. The difference between these results is a
whered is the total vocal fold thickness. Then, we have thatconsequence of the nonlinearity of the equations. The oscil-
ask, increasesx, increases as shown in Figs. 2 and 3, and atation frequency isf =99 Hz. The plot also shows collision
the same timer decreasefsee Eq(6)]. Both variations con- between the vocal folds, and a large phase difference of
tribute to increase the glottal convergence angle. ¢=147°. All these features correspond to a chest-like oscil-
lation.
In (b) the cover stiffness was increased k=20 000
dyn/cm, higher than the transcritical value and hence within
According to these results, the oscillation region is di-the region associated with the falsetto, representing a simul-
vided into two subregions: When the cover stiffnéssis  taneous deactivation of the TA muscle and large contraction
lower than the transcritical value,;, the oscillation takes of the CT. This value ok, was taken near the higher limit
place around an equilibrium position in which the glottis isfor the oscillation region(i.e., the rest position becomes
rectangular or slightly convergent. Above the transcriticalstable at higher values &f). The body stiffnes&; was kept
value Ky, the equilibrium position switches to a different at the same value as if@). In this case, the equilibrium

Ill. DISCUSSION CONSIDERING VOCAL REGISTERS
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FIG. 4. Numerical solution of Eq(l) for k,=5000 dyn/cm, and(a) . )

k,=80 000 dyn/cm,k,=500 dyn/cm<kyg;, M;=0.125 g, (b) k;=80 000 FIG. 5. Numerical solution of Eq(1) for k,=25000 dyn/cm, anda)

dyn/cm, ky=20 000 dyn/cro-Kyuy, m;=0.125 g, andc) k;=160 000 dyn/ ~ K1=80 000 dyn/cmk,=8000 dyn/cmckyc, m;=0.125 g.(b) k;=80 000

cm, k,=28 000 dyn/cr-Kyq, M;=0.05 g. dyn/cm, k,=55 000 dyn/crirKag,, m;=0.125 g, andc) k;=160 000 dyn/
cm, k,=80 000 dyn/cri-K,i,, m;=0.025 g.

position isx;=0.022 cmx,=0.0045 cm, which corresponds
to a glottis wider and more convergent than in the previous The above plots were selected as rather extreme ex-
plot. The medial position ix;=0.015 cm,x,=0.0030 cm. amples of the oscillation around each equilibrium position.
The frequency i§ =86 Hz, there is no fold collision, and the Note that the large phase difference in Figp)4esults in the
phase difference decreased ¢e=45°. Except for the fre- glottis opening twice in each oscillation cycle, which is not
guency decrease, this example may be considered as tgpical of the chest register, as pointed by a reviewer of this
falsetto-like oscillation. letter. In Fig. 5 another set of plots is shown, using the stan-
The transition to the falsetto register is normally associ-dard value fork,=25 000 dyn/cm. In(a), the cover stiffness
ated with a frequency jump, instead of the decrease shown was given the standard valle=8000 dyn/cm, which is
(b). However, note that all the parameters excieptwere lower than the transcritical value,;=11428 dyn/cm. The
kept constant. Inc) a more realistic configuration for the oscillation is chest-like, with a frequencf=134 Hz and
falsetto register is shown. As in Story and Tit4995, we  phase difference=44°. The equilibrium position is located
assume that the large CT contraction increases also the body x;=0.0012 cmx,=0.00088 cm. Inb), k, was increased
stiffnessk,, to a valuek,;=160 000 dyn/crh Also, m; was to a valuek,=55 000 dyn/cm, higher thaky;. The oscilla-
reduced tan;=0.05 g, assuming that the effective oscillating tion is falsetto-like, with a frequency=64 Hz, and phase
mass of the body reduces to the ligament only. The covedifference ¢=13°. The equilibrium position is located at
stiffnessk, was also taken near the higher limit for the os-x;=0.0142 cmx,=0.0044 cm, with a wider and more con-
cillation region, atk,=28 000 dyn/cri The transcritical vergent glottis than iffa). Finally, a falsetto-like oscillation
value fork, in this case ik,.;;=6956 dyn/cm, hence this with a higher frequency of=274 Hz is shown ir(c). There,
configuration is within the falsetto regidg>Kk,.i. We can  an increase of the body stiffnesskp=160 000 dyn/cm and
see that the oscillation has falsetto-like features, with a frea decrease of its mass t0,;=0.025 g was assumed. The
guency jump tof =171 Hz. cover stiffness was given the value=80 000 dyn/cm,
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which is higher than the transcritical valke,;=42105 dyn/  a jet stream above the glottal constriction, or pressure losses
cm. for viscosity. Our results show that the coexistence of differ-
A point of discussion is that, although the chest—falsettcent limit cycles and other nonlinear phenomena reported in
transition consistently occurs in the frequency range 300-that paper do not occur when the jet formation or the viscous
350 Hz (Titze, 1994, the present analysis do not show anylosses are incorporated into the model. Therefore, it is not
particular relation to those frequencies. clear whether those phenomena represent a real feature of the
It is to be noted that the above examples are not intendedocal fold oscillation, or they are just a product of the par-
to simulate closely the chest and falsetto registers, but rathéicular model used.
to show that each of the oscillation subregions have chest- We believe that the study of vocal registers from a non-

and falsetto-like characteristics. linear dynamics approach along the above litieenscritical
bifurcation or coexistent limit cycleor other alternatives is
IV. CONCLUSION interesting and deserves further research.
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