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This paper presents a theoretical study on the differences in the biomechanical parameters of the
vocal folds between oscillation onset and offset. The dynamics of the oscillation is analyzed from
the perspective of the theory of nonlinear dynamical systems, using a mucosal wave model of the
vocal folds with the subglottal pressure and the vocal fold half-width as control parameters. It is
shown that the oscillation onset occurs through a Hopf bifurcation of the subcritical type, at which
an unstable limit cycle is generated. Also, the oscillation offset occurs at a cyclic fold bifurcation,
at which the unstable limit cycle and a stable limit cy(tlee actual vocal fold oscillatigrcoalesce

and cancel each other. Both bifurcations combine to form an “oscillation hysteresis” phenomenon,
common in cases of flow-induced oscillations. An analytical expression for the onset/offset ratio of
parameters is derived. The onset/offset ratio is in the range of 0.5-1, in agreement with the
experimental evidence. This value depends on the phase delay in motion of the upper edge of the
vocal folds versus the lower edge, and on the particular model adopted for airflow separation within
the glottis. © 1999 Acoustical Society of Amerid&0001-496629)00201-5

PACS numbers: 43.70.Aj, 43.70.Bk, 43.40.At, 43.40[@& ]

INTRODUCTION glottal width will increase the glottal aerodynamic resistance

It is known that the biomechanical configuration of the and therefore cause the observed larger transglottal pressure,

vocal folds at oscillation onset is different from their con- sma\l/l\(/er: |n(;[raorz;rl1_pre§sure, and lower i'rlﬂotvr\]'_' i
figuration at oscillation offset. This difference has been ob-I K y‘t oes 'pr enom_e_nontﬁccur. n t.'s pafpte;]r, we W'I
served for various parameters related to the vocal fold oscillo 0K Tor IS ongin by €xamining the generation ot the voca

lation and under various experimental settings. For examle?ld(?SC'"aF'or: frortn the [l)erspectlye of thehtheorylgfgnonlln-
studies of excised laryngd8aer, 1981; Berret al, 1999 €ar dynamical systems. In a previous wotkicero, 3 a

and physical models of the vocal fold mucoatze et al, ?escrtlrt])mg funtctlof? nj[eéhf?dsnjak, .193? Wai uls?tdlto ana-
1995; Charet al,, 1997 have shown that the subglottal pres- ¥§e c onfe _Ok S.et Id ertenc?fm € subglo da prdessure.
sure is lower at oscillation offset than at oscillation onset, € present work intends 1o offer an improved and more

h ther bi hanical t . glottal widt general description of this phenomenon, which might pro-
when other biomechanical parametéesg., glottal width ide a theoretical basis for further studies. Considering that

are kept constant. Similar onset—offset differences have beeflS i directed iy t d i th h field
also observed during the production of speech. Studies wit IS paper 1S directed mainly 1o readers in the speech Tield,
the mathematical techniques used in the paper which might

subjects uttering vowel-voiceless consonant—vowel se:- " . . .
guences have shown that the intraoral pressure is lower at tlpg not familiar to some readers will be presented in detail.
voice onset of the second vowel compared to the voice offset

of the first vowel(Munhall et al,, 19949, the airflow is lower

(Koenig and McGowan, 1996the transglottal pressures is |. VOCAL FOLD MODEL

higher (Hirose and Niimi, 198, and the glottal width is o . .
smaller(Hirose and Niimi, 198, Analysis will be based on a version of Titze’s mucosal

According to this experimental evidence, the vocal foldWave model(Titze, 1988 for the vocal fold oscillation. As
configuration at oscillation onset seems to be always mor€hown in Fig. 1, we assume that during the oscillation the
restricted than the configuration at offset. When the geomgoVer (epithelium and superficial layers of the vocal liga-
etry and other biomechanical parameters are fixed, as in tH8€nd of the vocal folds propagates a surface mucosal wave
excised larynx experiments, then a larger subglottal pressufg the direction of the airflow, and the bodyleep layer of
is required to start the oscillation. In the speech productiorthe vocal ligament and musglés stationary. _
experiments, if we assume that the subglottal pressure is ap- 1he cross-sectional areas at glottal ertfyand exita,
proximately constant during the vowel—consonant—voweRre€ approximated by
sequence, then the experimental results indicate a larger vo-
cal fold adduction at oscillation onset. Note that a smaller a;=2L(Xy+X+ 7X), (D)

dElectronic mail: lucero@mat.unb.br a,=2L(Xo+X— 7X), 2
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FIG. 1. Mucosal wave mod€Titze, 1988.

where L is the length of the vocal fold in the antero—
posterior direction, and is the time delay for the mucosal
wave in traveling half the glottal widtf (length of the glot-
tal channel in the direction of the airflgwlhe motion of the
vocal fold is described by the differential equation
m¥+rx+kx+ Py, )
wherex is the lateral displacement of the vocal fold at the
midpoint of the glottism, r, andk, are the mass, damping,

and stiffness of the oscillating portion of the vocal fold tissue

per unit area of the medial surface of the vocal fold$),
and Py is the intraglottal pressure, equal to the mean of th
glottal pressureP(z) along the direction of the airflowz
axis in Fig. 2

T

)

1

Py=1

P(z)dz (4)

Details on the derivation of the above equations may be

found in Titze's pape(Titze, 1988.

For simplicity, we assume further that the supraglottal

vocal tract vocal tract

free jet free jet

traquea traquea

(a) (b)

FIG. 2. Airflow separation from the glottiga) Convergent glottis(b) di-
vergent glottis.

glottal wall is located at the exit of the glottis, in the case of
a convergent glottifFig. 2@)], or may move within the glot-
tis, as it becomes divergeffig. 2(b)].

According to Pelorsoet als results(1994), in a diver-
gent glottis the ratio between the glottal ampat the point
of airflow separatioisee Fig. 2b)] and the minimum glottal
area @,) becomes asymptotically constant at high Reynolds
numbers &,/a;~Kkg). In measurements on a physical model
of the larynx with a cylindrical profile for the vocal folds,
they obtained the approximate relatiap/a;~1.1. For the
present analysis, their equatiofas they appear in Pelorson
et al, 1999 were solved assuming a linear variation of the
glottal area along the glotti&-axis in Fig. 1, and an ap-
proximate relatioray/a;~1.3 was obtained. Hence, we as-
sume as a first approximation that airflow separation occurs

At the point where the glottal area is

koal y if az> koal ,
aO:
ao,

®

if ay<kpa,

whereky=1.3. Coordinatez at the point of airflow separa-
tion has the value=z,, with

Qo—az
=3, "a
28y

T. (6)

Downstream from the point of airflow separation, the air

pressure is equal to the atmospheric pressure, the subglotigliis he giottis in a free jet and becomes turbulent. The
pressurePs is constant, and the prephonatory glottal shape ig iy, jence dissipates all the kinetic energy of the flow and no

rectangulandashed line in Fig. 1

The glottal aerodynamics is described following the
boundary layer model by Pelorson and co-work@&slorson
et al, 1994, 1995 for high Reynolds numbers. This model

pressure is recovered. Thus the pressure at the point of air-
flow separation is zero.

Upstream from the point of airflow separation, friction
in the bulk of the flow may be neglected, and the flow de-

appears to be valid for the range of typical values for theScribed with the energy equation

glottal flow (Re in the order of 3000 except when the glottis
is narrow and near closur@n this case, a viscous model
should be used

pu?
2ag’

@)

S

The glottal flow is considered quasisteady and incom-

pressible. The bulk of the flow is frictionless and laminar,
except in the vicinity of the glottal wallg$boundary layer

where viscous forces are large. Due to the abrupt area expan-

sion at the glottal exit, the boundary layer separates from th

whereP; is the subglottal pressurg.s the air density, and

is the air flow volume velocity.

Finally, applying the energy equation between the point
of coordinatez and the point of airflow separation, to

glottal wall and causes a free jet stream downstream the gloevaluate the pressui(z) (Titze, 1988 and integrating Eq.

tis (Fig. 2. The point at which the flow detaches from the
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TABLE I|. Parameter values of the mucosal wave madéize, 1988. The stability of the equilibrium position may be next
analyzed taking only the linear part of the equation of motion
in the neighborhood of the equilibrium positigMinorsky,

Parameter Value

m 4.76 kg m': 1962; Guckenheimer and Holmes, 198Since the oscilla-
’ 100006’\‘ sm tion has a small amplitude in that neighborhood and hence
L ijlcmN m the glottis is near rectangular, there is no airflow separation
T 03 cm within the glottis and the glottal pressure simplifies to
w=+k/m 648.2 st .
5 60° P.=P 1_% ZZLSX_' (9)
7=0/(2w) 0.81 ms g s a;) Xot+X+7X
p 1.15 kgm'® . . L . .
Expanding this equation in a Taylor series and keeping only
the linear terms, we obtain
2, ao Pg=rgX, (10
Pe=Ps7 |1~ a,)’ ® where
The dynamics of the model is then completely described 27P,
by Egs.(1), (2), (3), (5), (6), and(8). As standard values for rg= X0 (11

the parameters, we adopt the values shown in Table I. In the
table, 5= 2w is the phase delay in motion of the upper edge ~ We can see that the glottal pressure is proportional to the
of the vocal folds in relation to the lower edge. These valuegocal fold velocity, and hence it acts as an aerodynamic
will be used throughout the analysis, except where indicatedamping with the coefficienty. Replacing in Eq(3), we
otherwise. obtain the linearized equation of motion

3 Wg must be aware that this mo_del contgins gross sim- M3 (1 —1 g) X+ kx=0. (12)
plifications of the vocal fold dynamics. Particularly, it ne-
glects three factors consistent with the quasi-steady flow asfhe roots of the characteristic equation are
sumption:(1) viscous losses, which may become significant (—r R
when the glottis is narrow and the glottal flow is Iagwote s=— 9+ S (13
that the boundary layer model contains the assumption of a 2m m
high Reynolds number (2) glottal exit rounding effects on  The real part of the roots are zero at
the pressure distribution in the glotti&uo and Scherer,
1993; and (3) the actual point of action of the resultant r—rq=0. (14

glottal pressureRy), which should be lower than the glottal Forr >r the roots have positive real parts and the equilib-
midpoint (Guo and Scherer, 1993Preliminary analyses in-  riym position is unstable. Note that under this condition, the
cluding viscous losse§following Pelorsonet al's model  igig] damping[coefficient for thex term in Eq.(12)] be-
(1994] have shown no significant variation of the presentcomes negative. This negative sign implies a net transfer of
results for the range of parameters considered here, e.g.,ehergy from the airflow to the vocal folds, and so oscillation
wide open glottis at the prephonatory position. This fact ismay start, as it will be shown later in Sec. IV A.

consistent with a previous analysis on the optimal glottal  The condition expressed by E€L4) is the threshold
configuration(Lucero, 1997, which shows that in a wide ¢ondition for oscillation onset, at which the equilibrium po-
glottis airflow separation effects are much larger than viscousition of the vocal folds becomes unstable and the oscillation
losses, and hence the later may be neglected as approximg-generated_ Replacing EfL1) and solving, we may com-

tion. However, the situation may be different in a glottis nearpyte for example the oscillation threshold subglottal pressure
closure(as in the case of a pressed voice ohsEhe above

simplifications are intended to reduce the model to the basic _Xo (15)
oscillatory dynamics, neglecting details not relevant to the s-onset™ o
present study.

r—rg
2m

which is the minimum subglottal pressure required to start
the oscillation. Similarly, we can consider an oscillation

threshold glottal half-width
Il. EQUILIBRIUM POSITION AND STABILITY

(PREVIOUS RESULTS) 27Pg

) ) o ) - XO-onset:Tv (16)
The first step in the analysis is to determine the equilib-

rium positions of the vocal folds and their stability. Setting to which is the maximum glottal half-width to start the oscilla-

zero the time derivatives, from Eqgl) and (2) we obtain  tion.

a;=a,. Since the glottis is rectangular, there is no airflow This same stability analysis has been done in previous

separation within the glottis, heneg=a, andz,=T. Solv-  works using a variety of models and techniqiesy., Ish-

ing the resultant equations for we find that there is only izaka, 1981; Ishizaka and Matsudaira, 1972; Lucero, 1993,

one equilibrium position and it is located at the initial posi- 1995; Steinecke and Herzel, 1995; Titze, 1988owever,

tion x=0. analysis only shows that at threshold the equilibrium position
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A the parameter increases a stable equilibrium position and an
unstable limit cycle coalesce into an unstable equilibrium
- stable limit position. This case is more complex and appears in combi-
5 / cycle nation with other bifurcation phenomena. It is common in
@ ° éz? _ the flow-induced oscillation of structures, such as wind-
\Qg‘:b Un;tgglt?oﬁqw'- induced oscillation of bridgegThompson, 1982; Thompson
& / and Stewart, 1986
______ e
stable equil. parameter
position  Hopf
bifurcation B. Hopf’s theorem
(superecritical)
To show the existence of a Hopf bifurcation at the os-
A cillation onset threshold and determine its type, we may use
Hopf's Theorem(Guckenheimer and Holmes, 1983Ac-
> — unstg?é% limit cording to this theorem, first we have to verify that at the
b 3 . \\%\ bifurcation, the system has a pair of pure imaginary roots and
$ Sof ‘ f AN no other roots with zero real parts. This was done in the
S i ! *\  unstable equil previous section. Next, we have to verify that, as the control
I i \ \ position ;
& ; ' \ parametefe.qg., the subglottal pressinearies and passes the
T ; t l\ arame; bifurcation value(i.e., the oscillation onset thresha/dhese
st;ggt%qnuil-\\ | ,,' Hopf roots cross the imaginary axes transversely. In mathematical
‘\ /’ /// bifurc’;tion terms,
\ , - (subcritical) d
ST dap, [Res(Py)llp-p_,, . 17

FIG. 3. The Hopf bifurcation(a) Supercritical,(b) subcritical(Thompson
and Stewart, 1986

Introducing Eqs(13) and(11), we obtain
T
becomes unstable, and it says nothing about the generation d_ps [Res( Ps)]|Ps: Ps.onset mio' (18)
of an oscillation. It is clear that an oscillation appears at
threshold, as it can be shown by solving numerically the
equations of motion. But exactly how is it generated? Thishe form
issue is important in understanding the oscillation onset— U 0 —-w\lu f(u,v)
- . . . . _ i — + 1 1

offset dynamics, and will be considered in the following sec v) w 0 (U) (g(u,v))’ (19

where w is a constantf(0,0)=g(0,0)=0 (i.e., there is an

tions.

lIl. OSCILLATION ONSET: SUBCRITICAL HOPF equilibrium position atu=0, v=0), and @f/du)(0,0)
BIFURCATION =(9f/9v)(0,0)=(dg/4u)(0,0)=(dg/Iv)(0,0)=0, and
compute the parameter

Finally, we have to rewrite the equations of motion in

A. The Hopf bifurcation

Let us briefly_ rev_iew hovy_an oscillation may be gener-K = 1i6 (fuuut Fuvo F G T Gove) + % [fuo(Fuutfou)
ated from an equilibrium position. In the theory of nonlinear
dynamical systemgGuckenheimer and Holmes, 1983; Mi- _ _
norsky, 1962; Thompson and Stewart, 1988e qualitative Guo (G Goo) ~ FuuBuu™ fu B ] (20
change of dynamical behavior at a critical value of a paramWheref,, denotes §*f/dx dy)(0,0), etc. IfK+0 then the
eter is called a bifurcation. At a Hopf bifurcation, an equi- Pifurcation is of the Hopf type, and a limit cycle is generated
librium position changes its stability and an oscillatidimit at the bifurcation. Further, K> 0 the bifurcation is subcriti-

cycle) is generated. cal, and ifK<0 it is supercritical.

Two types of Hopf bifurcations are possible. We illus- ~\We can write the equations of motion in the form shown
trate them in Fig. 3, where we represent the dynamical bell EQ. (19) with the change of variables
havior as a function of a control parameter the case of the U= — X, (21)
vocal fold model, this parameter would be, e.g., the subglot-
tal pressure or the glottal half-widthin the figures, a solid V=X, (22

line represents stable equilibriura position or a limit  \yherew=/k/m. and letting
cycle), and a dashed line represents unstable equilibrium. At

the supercritical Hopf bifurcatiofFig. 3@)], as the param- f(u,v)=0, (23
eter increases a stable equilibrium position bifurcates into an r 2:Pw
unstable position and a stable limit cycle. This is the simplest  g(u,v)=——v+ ° (29

case, and corresponds, e.g., to the well-known van der Pol m= m(-Weotxetmw)

oscillator. In the subcritical Hopf bifurcatioffFig. 3(b)], as  Note thatf(0,0)=g(0,0)=0 as required by the theorem.
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theorem, and evaluate them at the equilibrium position W, = rx® dt. (31)
=0, v=0 and at the bifurcation conditioRs=Ps—onset.

All of the derivatives off(u,v) are identically zero. The To compute this integral, we need an expressionxid).

Next, we compute all the derivatives required by the sz)
rx dx=

cycle 0

derivatives ofg(u,v) are Let us assume as an approximation that the oscillation may
be described by the sinusoid
9u=9,=9u=0, (25 .
X=A sin wt. (32
r
Oup= —— (26) Replacing into Eq(31) and integrating, we obtain
oot W, = 7A%wr. (33
-
900= " iy’ 27 The energy absorbed from the airflow is the work done
by the glottal pressure
— 2r 28 27l w
Juw = mwzxg ’ (28) Wg= Pg(X)dX= f Pg(t)X dt. (34
cycle 0
672r ; : i
Uypoo=—7" (29) Using again Eq(32) for x(t), we obtain
mx(% 27w
and replacing in Eq(20) we obtain finally Wg:Awfo Py(t)cos wt dt. (35
r 1 Tr . . L -
= We can rewrite this equation in a similar form to Eg3)
K 8 372+52+W >0. (30) q g
Wy= wAzwrg, (36)

The above result shows that oscillation onset is a sub-

critical Hopf's bifurcation, at which an unstable limit cycle is Where
generated. This same conclusion will be reached repeating 1 (27l
the same analysis with the glottal half-width as the control "=7A Pgy(t)coswt dt (37

parameter
is an aerodynamic damping factor. This aerodynamic damp-

IV. HYSTERESIS AT OSCILLATION ONSET-OFFSET ing is equivalent to the one derived for the stability analysis
of the equilibrium positiorfEq. (11)], and we use the same
symbol to denote it. Equatiof87) is the general expression

In the previous section we found that the limit cycle function of the oscillation amplitude, and it reduces to Eq.
generated at the oscillation onset bifurcation is unstable. Ai11) whenA tends to zero[For smallA, there is no airflow
unstable limit cycle cannot be observed physically; if weseparation andPy is given by Eq.(9). Introducing Eq.(32)
could put the vocal folds exactly on the trajectory of thisand lettingA—0, we obtainP,=(2Psw7A coswt)/xy, and
limit cycle, any infinitesimal perturbation would take them replacing in Eq(37) and integrating we obtain Eq11).]
out of it. However, we know that the vocal folds are capable =~ We will user andry as normalized measures of the
of a stable steady state oscillation. Moreover, if we solve theenergies dissipated in the tissues and absorbed from the air-
equations of motion numerically with a subglottal pressureflow, respectively, in one oscillation cycle. lnard’s crite-
just above the onset threshold vali@s will be done latgr  rion will be then satisfied when=r .
we will find a stable limit cycle. We conclude then that the Figure 4 shows a numerical example of the normalized
observed oscillation of the vocal foldstable limit cyclg is  absorbed energy versus the oscillation amplitude, at various
not the same limit cycle generated at the Hopf bifurcation ofvalues of the airflow separation coefficidgt The solid line
the equilibrium position. Then, where does this stable limitrepresents results using the above equations, and the dashed
cycle come from? line represents results neglecting airflow separation in the

To answer this question, we have to study the system allottis (i.e., settingag=a,). The dashed line shows that the
large amplitude oscillations. Unfortunately, the vocal fold absorbed energy increases as the oscillation amplitude grows
model is still complex and we cannot obtain a closed-formlarger. This fact may be understood by considering that the
solution for the limit cycles. We will take then a more indi- transfer of energy from the airflow to the vocal folds is
rect approach, considering the exchange of energy betwearaused by the oscillation itself, so as the oscillation grows in
the glottal airflow and the vocal folds. amplitude, more energy can be transferred. However, for

A criterion by Lienard states that an oscillator reaches aphysical constraints the absorbed energy cannot grow to in-
steady state oscillation when the energies absorbed and diaity. We see in the solid line that when airflow separation
sipated in one cycle cancel oUtinorsky, 1983. In their  in the glottis is included, the slope of the curve changes at a
oscillation, the vocal folds absorb energy from the airflowcertain oscillation amplitude. This amplitude is precisely the
and dissipate energy in the tissy&#ze, 1988, 1994 Letus  amplitude at which the point of airflow separation moves

A. Energy balance

compute those energies. within the glottis. Airflow separation reduces the vocal fold
The energy dissipated in the tissues is the work done bgurface through which the airflow transfers energy to the
the damping force vocal folds, causing the decrease in the absorbed energy. If a
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FIG. 4. Normalized absorbed energy versus oscillation amplitudePfor FIG. 6. Oscillation amplitude versus subglottal pressurexfgr 0.5 mm.
=320 Pa,xq=0.5 mm, andk,=1.1 (1), 1.3 (2), 2 (3). At the right, the Solid line: stable limit cycle, dashed line: unstable limit cycle. Point A:
curves stop at the glottal closure. subcritical Hopf bifurcation, point C: cyclic fold bifurcation. A-B-C-D: os-
cillation hysteresis loop. Squaréstable limit cyclg and trianglegunstable
limit cycle): results from direct solution of the equations of motion.
larger value ofk, is adopted, then airflow separation within

the glottis starts at a larger glottal divergence angle. In this . . .
case, the change of slope of the energy curve occurs at plished increasing the lung pressure, for example, to 315 Pa

larger oscillation amplitude, and the difference between th curve 4. Since t_he_absorbed energy at Zero amplltuo_le IS
energy absorbed at zero amplitude and the maximum al arger than the dissipated energy, the oscillation amplitude

sorbed energy increases. will grow fqllowmg curve 4 until reaching a point _of k_)al—
ance, at point A. This point represents a stable oscillation, or
B. Oscillation hysteresis stable limit cycle. If a perturbation increases the oscillation

Based on the previous results, we will examine the OS5':1mplitude, the absorbed energy becomes smaller than the

cillation dynamics through numerical examples. dissipated energy, and the osgillatipn amplituqle will return to
Figure 5 shows curves of normalized absorbed energt_ e balance point. The opposite will happen if the perturba-

versus oscillation amplitude at various values of lung pres_|on decreases the oscillation amplitude. _In '_[hls case, the ab-
sure. The normalized dissipated energy fis=1000 sorbed energy becomes larger than the dissipated energy, and

N's m3, indicated in the plot with a dashed line. the oscillation amglltude W|Ilhgrowb ottal I
Let us consider how the oscillation starts and stops. As- W€ can now decrease the subglottal pressure to a value

sume that the vocal folds are initially at rest at the equilib-"2Wer tlhan the value requwﬁd to s.,ltlarF the oscl,‘_llle:jnon.."For
rium position and hence the oscillation amplitude is zero. TEX@MP'E, 308hPacurve 3 T fe o;su ation amp 'tlr"] € \r/]w .
start the oscillation, the absorbed energy has to be increaséigcrease to the new point of balance B. Note that there is

to a value above the dissipated energy. This will be accom@'SC @ second point of balance, point C. However, this is an
unstable point. If a perturbation increases the oscillation am-

plitude, the absorbed energy becomes larger than the dissi-
pated energy, and the oscillation will continue growing to
point B. If the perturbation decreases the oscillation ampli-
tude, the absorbed energy becomes smaller than the dissi-
pated energy, and the oscillation will continue decreasing to
the equilibrium point at zero amplitude. Point C represents
then an unstable limit cycle, which is the limit cycle gener-
ated at the subcritical Hopf bifurcation.
At a subglottal pressure equal to 301 @arve 2, both
limit cycles coalesce at point D. Below this press(rarve
1), there is no point of balance between the dissipated and
absorbed energies, and hence no oscillation is possible. Point
D is a bifurcation called cyclic fold, at which the unstable
and stable limit cycles coalesce and canceled each other.
O T o o 0T o oa4 o6 .We_ can plqt the points of energy balance taking th(_a
Oscillation ampiitude (mm) oscillation amplitude versus the lung pressure, as shown in
_ - _ Fig. 6. In this figure, the stable pointstable limit cycle are
'i'06_'5?{1n':";L’gg!ie;ggfggfgoi”g%)"’ggsgf;:g)::"g;'gnpg(rz)‘?"é“aﬁxggr plotted with solid line, and the unstable poirtmstable limit
cycle) with dashed line. The square and triangle symbols

line: normalized dissipated energy. Points A and B: stable limit cycle, point~Y™ _ ) - ]
C: unstable limit cycle, point D: cyclic fold bifurcation. indicate results obtained by direct numerical solution of the
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Dashed line: normalized dissipated energy. subcritical Hopf bifurcation, point C: cyclic fold bifurcation. A-B-C-D: os-
cillation hysteresis loop. Squaréstable limit cycle¢ and trianglegunstable
limit cycle): results from direct solution of the equations of motion.

equations of motion. The square is the amplitude of a stable
limit cycle [the maximum value ok(t)] and the triangle is the oscillation we have to decrease the glottal width, so that
the amplitude of an unstable limit cycle. We can see nahe absorbed energy at zero oscillation amplitude becomes
significant difference between the analysis and the numericahrger than the dissipated energy. This will be accomplished
results, which validates the sinusoidal approximationx{aj at, for examplex,=0.64 mm(curve 4. This curve has only
[Eq. (32)] used in the energy analysis. one point of balance between the absorbed and dissipated

Increasing the subglottal pressure from zero, we need tenergies, and it represents a stable limit cycle. The curve for
reach point A to start the oscillation. Point A is the subcriti- x,=0.65 mm(curve 3 has two points of balance, the left
cal Hopf bifurcation found in Sec. Ill; at this point, the un- point represents an unstable limit cycle and the right point is
stable limit cycle is generated and the equilibrium positiona stable limit cycle. The curve fax,=0.66 mm (curve 2
becomes unstable. The subglottal pressure at this point is tlghows a cyclic fold bifurcation, at which both limit cycles
oscillation onset threshold. As explained above, at this pointoalesce. For larger glottal widtlisurve ) there is no point
the energy absorbed from the airflow becomes large enoughf energy balance and hence no oscillation is possible.
to overcome the energy dissipated in the tissues. The oscil- Figure 8 shows the points of energy balance taking the
lation will then start jumping to point B in the curve corre- oscillation amplitude versus the glottal half-width. We can
sponding to the stable limit cycle. If we now reduce the lungsee also here a hysteresis loop A-B-C-D, similar to Fig. 6.
pressure, the oscillation amplitude will decrease following
the curve, until we reach point C. At this point, the stable andc. Onset—offset ratio

unstable limit cycles coalesce and disappear in a cyclic fold _ _ . :
y PP y We will derive an analytical expression for the onset—

bifurcation. The oscillation will then vanish abruptly. The ffset ratio. t ine its relation t | fold :
subglottal pressure at point D is then the oscillation offse S€t ratio, 1o examine 1is relation to vocal foid parameters.
ecall from Figs. 5 and 7 that the onset threshold corre-

threshold, and it is lower than the onset threshold. Durin N .
ponds to an oscillation amplitudd=0, and the offset

this process, the oscillation amplitude follows a hysteresith hold ds t ilati litude at which
loop A-B-C-D. The oscillatory behavior shown in the figure reshoid correésponds 1o an oscillation ampitude at whic
the point of airflow separation moves within the glottis.

is the phenomenon called “oscillation hysteresis” by Apple- . ;
ton and Van der Pql1922. At this amplitude
Note that according to Fig. 6, oscillation offdge., the a,=koa;. (38

cyclic fold bifurcation occurs at an oscillation amplitude at

. . ) sing Egs.(1), (2), and the sinusoidal approximation for
which there is a change in the slope of the curve absorbeg(t) [Eq.(32)], and solving for the value ok such that there

energy versus oscillation amplitude, and recall that at this : . :
; : . : - is a unique solution to Eq38), we obtain

amplitude the point of airflow separation moves within the

glottis (see explanation for Fig.)4Hence, the analysis pre- ko—1

dicts that airflow separation within the glottis will occur in a= ;

general during the oscillation cycle, except at the precise ko= 1)*+ 0 (ko + 1)%

condition of offset threshold. where a=A/x, is the normalized oscillation amplitude.
We can also consider the glottal half-width as controlNext, we compute the normalized absorbed energy at this

parameter. Figure 7 shows curves of normalized absorbedscillation amplitude. At this amplitude, there is no airflow

energy at various values of glottal widths. We can see &eparation within the glottis throughout the oscillation cycle,

pattern for the curves similar to Fig. 5. In this case, to starexcept at the point where the glottal divergence is maximum.

(39
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Hence, we can use E(p) for Py(t) (expression for no air-
flow separation in the glottjs Replacing in Eq.(37), and

©
e

letting 6=2wr be the phase delay of the upper edge of the g
vocal fold in relation to the lower edge, ame= wt, we ob- z o
tain _§
-0.1
2P,7
rg= ®(9), (40) _ -0.2
XO -0.2 0 0.2 -~0.2 4] 0.2
displacement {mm) displacement {mm})
where
FIG. 10. Phase plane plots, fap=0.5 mm, 5§=30°, r=2000 N s m?3, k
1 rem cos ¢ =1x10° Nm~3, andP,=750 Pa(a), 786 Pa(b), 800 Pa(c), 830 Pa(d),
D(6)= ; o 1+a sin 6+26a cos de. (41) 870 Pa(e), and 900 P4f). For clarity in the plots, no trajectory was plotted

between the limits cycles in pldt), and inside the internal limit cycle in

In the above equations, letting=r,, we obtain the point of ~PIot (©:

balance between the absorbed and dissipated energies. Fur-

ther, lettinga=0 we obtain the oscillation onset condition, ration in the glottis starts at zero degree of glottal divergence
and lettinga equal to the value given by E(39) we obtain  angle. This assumption is equivalent to a separation coeffi-
the offset condition. Considering only the subglottal pressureient ky=1, which leads to an offset/onset ratio equal to 1.
and the glottal half-width as control parameters, we obtairiThus the present analysis predicts that those models should
the relation not be able to simulate the oscillation hysteresis phenom-

enon.
(PS/XO)|oﬁset_ 1

(Ps/XO)|onset_ (I)( 5) '
Figure 9 shows values of the offset/onset ratio versus thg' Phase plane plots

phase delay, and various values of the airflow separation The phase plane plots in Fig. 10 illustrate the dynamical
coefficientk,. Note that according to the above equations,behavior of the vocal folds, as the subglottal pressure is var-
the offset/onset ratio is only a function of these two param-ied. They were obtained by direct solution of the equations
eters. In general, the offset/onset ratio varies between 0.5 araf motion with numerical algorithms, and with parameter
1. This range is in agreement with experimental valuesalues selected to provide a clear plot. Rl@t corresponds
(Baer, 1981; Berryet al, 1995; Chanet al, 1997; Hirose to a subglottal pressure below both thresholds, and shows a
and Niimi, 1987; Koenig and McGowan, 1996; Munhall stable equilibrium position at the origin. In pl@b), we see
et al, 1994; Titzeet al, 1995. that as the subglottal pressure increases and becomes near
We see that at a given phase delay, the offset/onset ratihe offset threshold, the trajectory curves become closer to-
decreasegthat is, the difference between onset and offsefgether in a region around the equilibrium position, anticipat-
increasesas the airflow separation coefficiekg increases. ing the cyclic fold bifurcation. Plofc) corresponds to a sub-
Recall here the relation between coefficigpand the glottal  glottal pressure just above the offset threshold. We see that
divergence angle at which airflow separation in the glottistwo limit cycles have appeared from a cyclic fold bifurca-
starts, discussed for Fig. 4. Considering this result, we mugion. The internal limit cycle is unstable, and the external is
note that previous models of the vocal fold oscillati@ng., stable. As the subglottal pressure continues to increase, we
Herzel et al, 1995; Steinecke and Herzel, 1995; Story andsee in plotgd) and(e) that the internal unstable limit cycle
Titze, 1995 have assumed for simplicity that airflow sepa- becomes smaller and closes around the stable equilibrium

(42
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