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This paper presents a theoretical study on the differences in the biomechanical parameters of the
vocal folds between oscillation onset and offset. The dynamics of the oscillation is analyzed from
the perspective of the theory of nonlinear dynamical systems, using a mucosal wave model of the
vocal folds with the subglottal pressure and the vocal fold half-width as control parameters. It is
shown that the oscillation onset occurs through a Hopf bifurcation of the subcritical type, at which
an unstable limit cycle is generated. Also, the oscillation offset occurs at a cyclic fold bifurcation,
at which the unstable limit cycle and a stable limit cycle~the actual vocal fold oscillation! coalesce
and cancel each other. Both bifurcations combine to form an ‘‘oscillation hysteresis’’ phenomenon,
common in cases of flow-induced oscillations. An analytical expression for the onset/offset ratio of
parameters is derived. The onset/offset ratio is in the range of 0.5–1, in agreement with the
experimental evidence. This value depends on the phase delay in motion of the upper edge of the
vocal folds versus the lower edge, and on the particular model adopted for airflow separation within
the glottis. © 1999 Acoustical Society of America.@S0001-4966~99!00201-5#
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INTRODUCTION

It is known that the biomechanical configuration of t
vocal folds at oscillation onset is different from their co
figuration at oscillation offset. This difference has been o
served for various parameters related to the vocal fold os
lation and under various experimental settings. For exam
studies of excised larynges~Baer, 1981; Berryet al., 1995!
and physical models of the vocal fold mucosa~Titze et al.,
1995; Chanet al., 1997! have shown that the subglottal pre
sure is lower at oscillation offset than at oscillation ons
when other biomechanical parameters~e.g., glottal width!
are kept constant. Similar onset–offset differences have b
also observed during the production of speech. Studies
subjects uttering vowel–voiceless consonant–vowel
quences have shown that the intraoral pressure is lower a
voice onset of the second vowel compared to the voice of
of the first vowel~Munhall et al., 1994!, the airflow is lower
~Koenig and McGowan, 1996!, the transglottal pressures
higher ~Hirose and Niimi, 1987!, and the glottal width is
smaller~Hirose and Niimi, 1987!.

According to this experimental evidence, the vocal fo
configuration at oscillation onset seems to be always m
restricted than the configuration at offset. When the geo
etry and other biomechanical parameters are fixed, as in
excised larynx experiments, then a larger subglottal pres
is required to start the oscillation. In the speech product
experiments, if we assume that the subglottal pressure is
proximately constant during the vowel–consonant–vow
sequence, then the experimental results indicate a large
cal fold adduction at oscillation onset. Note that a sma

a!Electronic mail: lucero@mat.unb.br
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glottal width will increase the glottal aerodynamic resistan
and therefore cause the observed larger transglottal pres
smaller intraoral pressure, and lower airflow.

Why does this phenomenon occur? In this paper, we w
look for its origin by examining the generation of the voc
fold oscillation from the perspective of the theory of nonli
ear dynamical systems. In a previous work~Lucero, 1995!, a
describing function method~Siljak, 1969! was used to ana
lyze the onset–offset difference in the subglottal pressu
The present work intends to offer an improved and m
general description of this phenomenon, which might p
vide a theoretical basis for further studies. Considering t
this paper is directed mainly to readers in the speech fi
the mathematical techniques used in the paper which m
be not familiar to some readers will be presented in deta

I. VOCAL FOLD MODEL

Analysis will be based on a version of Titze’s mucos
wave model~Titze, 1988! for the vocal fold oscillation. As
shown in Fig. 1, we assume that during the oscillation
cover ~epithelium and superficial layers of the vocal lig
ment! of the vocal folds propagates a surface mucosal w
in the direction of the airflow, and the body~deep layer of
the vocal ligament and muscle! is stationary.

The cross-sectional areas at glottal entrya1 and exita2

are approximated by

a152L~x01x1t ẋ!, ~1!

a252L~x01x2t ẋ!, ~2!
4235(1)/423/9/$15.00 © 1999 Acoustical Society of America
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where L is the length of the vocal fold in the antero–
posterior direction, andt is the time delay for the mucosal
wave in traveling half the glottal widthT ~length of the glot-
tal channel in the direction of the airflow!. The motion of the
vocal fold is described by the differential equation

mẍ1rẋ1kx1Pg , ~3!

wherex is the lateral displacement of the vocal fold at th
midpoint of the glottis,m, r, andk, are the mass, damping
and stiffness of the oscillating portion of the vocal fold tissu
per unit area of the medial surface of the vocal folds~LT!,
and Pg is the intraglottal pressure, equal to the mean of t
glottal pressureP(z) along the direction of the airflow~z
axis in Fig. 1!

Pg5
1

T E
0

T

P~z!dz. ~4!

Details on the derivation of the above equations may
found in Titze’s paper~Titze, 1988!.

For simplicity, we assume further that the supraglott
pressure is equal to the atmospheric pressure, the subglo
pressurePs is constant, and the prephonatory glottal shape
rectangular~dashed line in Fig. 1!.

The glottal aerodynamics is described following th
boundary layer model by Pelorson and co-workers~Pelorson
et al., 1994, 1995! for high Reynolds numbers. This mode
appears to be valid for the range of typical values for th
glottal flow ~Re in the order of 3000!, except when the glottis
is narrow and near closure~in this case, a viscous mode
should be used!.

The glottal flow is considered quasisteady and incom
pressible. The bulk of the flow is frictionless and lamina
except in the vicinity of the glottal walls~boundary layer!
where viscous forces are large. Due to the abrupt area exp
sion at the glottal exit, the boundary layer separates from
glottal wall and causes a free jet stream downstream the g
tis ~Fig. 2!. The point at which the flow detaches from th

FIG. 1. Mucosal wave model~Titze, 1988!.
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glottal wall is located at the exit of the glottis, in the case
a convergent glottis@Fig. 2~a!#, or may move within the glot-
tis, as it becomes divergent@Fig. 2~b!#.

According to Pelorsonet al.’s results~1994!, in a diver-
gent glottis the ratio between the glottal areaa0 at the point
of airflow separation@see Fig. 2~b!# and the minimum glottal
area (a1) becomes asymptotically constant at high Reyno
numbers (a0 /a1'k0). In measurements on a physical mod
of the larynx with a cylindrical profile for the vocal folds
they obtained the approximate relationa0 /a1'1.1. For the
present analysis, their equations~as they appear in Pelorso
et al., 1994! were solved assuming a linear variation of t
glottal area along the glottis~z-axis in Fig. 1!, and an ap-
proximate relationa0 /a1'1.3 was obtained. Hence, we a
sume as a first approximation that airflow separation occ
at the point where the glottal area is

a05H k0a1 , if a2.k0a1 ,

a2 , if a2<k0a1 ,
~5!

wherek051.3. Coordinatez at the point of airflow separa
tion has the valuez5z0 , with

z05
a02a1

a22a1
T. ~6!

Downstream from the point of airflow separation, the
exits the glottis in a free jet and becomes turbulent. T
turbulence dissipates all the kinetic energy of the flow and
pressure is recovered. Thus the pressure at the point of
flow separation is zero.

Upstream from the point of airflow separation, frictio
in the bulk of the flow may be neglected, and the flow d
scribed with the energy equation

Ps5
ru2

2a0
2 , ~7!

wherePs is the subglottal pressure,r is the air density, andu
is the air flow volume velocity.

Finally, applying the energy equation between the po
of coordinatez and the point of airflow separationz0 to
evaluate the pressureP(z) ~Titze, 1988! and integrating Eq.
~4!, we obtain

FIG. 2. Airflow separation from the glottis.~a! Convergent glottis,~b! di-
vergent glottis.
424Jorge C. Lucero: Hysteresis in vocal fold oscillation
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Pg5Ps

z0

T S 12
a0

a1
D . ~8!

The dynamics of the model is then completely describ
by Eqs.~1!, ~2!, ~3!, ~5!, ~6!, and~8!. As standard values fo
the parameters, we adopt the values shown in Table I. In
table,d52vt is the phase delay in motion of the upper ed
of the vocal folds in relation to the lower edge. These valu
will be used throughout the analysis, except where indica
otherwise.

We must be aware that this model contains gross s
plifications of the vocal fold dynamics. Particularly, it n
glects three factors consistent with the quasi-steady flow
sumption:~1! viscous losses, which may become significa
when the glottis is narrow and the glottal flow is low~note
that the boundary layer model contains the assumption
high Reynolds number!; ~2! glottal exit rounding effects on
the pressure distribution in the glottis~Guo and Scherer
1993!; and ~3! the actual point of action of the resulta
glottal pressure (Pg), which should be lower than the glotta
midpoint ~Guo and Scherer, 1993!. Preliminary analyses in
cluding viscous losses@following Pelorsonet al.’s model
~1994!# have shown no significant variation of the prese
results for the range of parameters considered here, e.
wide open glottis at the prephonatory position. This fact
consistent with a previous analysis on the optimal glo
configuration~Lucero, 1997!, which shows that in a wide
glottis airflow separation effects are much larger than visc
losses, and hence the later may be neglected as approx
tion. However, the situation may be different in a glottis ne
closure~as in the case of a pressed voice onset!. The above
simplifications are intended to reduce the model to the b
oscillatory dynamics, neglecting details not relevant to
present study.

II. EQUILIBRIUM POSITION AND STABILITY
„PREVIOUS RESULTS…

The first step in the analysis is to determine the equi
rium positions of the vocal folds and their stability. Setting
zero the time derivatives, from Eqs.~1! and ~2! we obtain
a15a2 . Since the glottis is rectangular, there is no airflo
separation within the glottis, hencea05a2 andz05T. Solv-
ing the resultant equations forx, we find that there is only
one equilibrium position and it is located at the initial po
tion x50.

TABLE I. Parameter values of the mucosal wave model~Titze, 1988!.

Parameter Value

m 4.76 kg m22

r 1000 N s m23

k 23106 N m23

L 1.4 cm
T 0.3 cm
v5Ak/m 648.2 s21

d 60°
t5d/(2v) 0.81 ms
r 1.15 kg m23
425 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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The stability of the equilibrium position may be ne
analyzed taking only the linear part of the equation of mot
in the neighborhood of the equilibrium position~Minorsky,
1962; Guckenheimer and Holmes, 1983!. Since the oscilla-
tion has a small amplitude in that neighborhood and he
the glottis is near rectangular, there is no airflow separa
within the glottis and the glottal pressure simplifies to

Pg5PsS 12
a2

a1
D5

2tPsẋ

x01x1t ẋ
. ~9!

Expanding this equation in a Taylor series and keeping o
the linear terms, we obtain

Pg5r gẋ, ~10!

where

r g5
2tPs

x0
. ~11!

We can see that the glottal pressure is proportional to
vocal fold velocity, and hence it acts as an aerodynam
damping with the coefficientr g . Replacing in Eq.~3!, we
obtain the linearized equation of motion

mẍ1~r 2r g!ẋ1kx50. ~12!

The roots of the characteristic equation are

s52
r 2r g

2m
6AS r 2r g

2m D 2

2
k

m
. ~13!

The real part of the roots are zero at

r 2r g50. ~14!

For r g.r the roots have positive real parts and the equil
rium position is unstable. Note that under this condition,
total damping@coefficient for theẋ term in Eq. ~12!# be-
comes negative. This negative sign implies a net transfe
energy from the airflow to the vocal folds, and so oscillati
may start, as it will be shown later in Sec. IV A.

The condition expressed by Eq.~14! is the threshold
condition for oscillation onset, at which the equilibrium p
sition of the vocal folds becomes unstable and the oscilla
is generated. Replacing Eq.~11! and solving, we may com-
pute for example the oscillation threshold subglottal press

Ps-onset5
rx0

2t
, ~15!

which is the minimum subglottal pressure required to s
the oscillation. Similarly, we can consider an oscillatio
threshold glottal half-width

x0-onset5
2tPs

r
, ~16!

which is the maximum glottal half-width to start the oscill
tion.

This same stability analysis has been done in previ
works using a variety of models and techniques~e.g., Ish-
izaka, 1981; Ishizaka and Matsudaira, 1972; Lucero, 19
1995; Steinecke and Herzel, 1995; Titze, 1988!. However,
analysis only shows that at threshold the equilibrium posit
425Jorge C. Lucero: Hysteresis in vocal fold oscillation
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becomes unstable, and it says nothing about the gener
of an oscillation. It is clear that an oscillation appears
threshold, as it can be shown by solving numerically
equations of motion. But exactly how is it generated? T
issue is important in understanding the oscillation ons
offset dynamics, and will be considered in the following se
tions.

III. OSCILLATION ONSET: SUBCRITICAL HOPF
BIFURCATION

A. The Hopf bifurcation

Let us briefly review how an oscillation may be gene
ated from an equilibrium position. In the theory of nonline
dynamical systems~Guckenheimer and Holmes, 1983; M
norsky, 1962; Thompson and Stewart, 1986!, the qualitative
change of dynamical behavior at a critical value of a para
eter is called a bifurcation. At a Hopf bifurcation, an equ
librium position changes its stability and an oscillation~limit
cycle! is generated.

Two types of Hopf bifurcations are possible. We illu
trate them in Fig. 3, where we represent the dynamical
havior as a function of a control parameter~in the case of the
vocal fold model, this parameter would be, e.g., the subg
tal pressure or the glottal half-width!. In the figures, a solid
line represents stable equilibrium~a position or a limit
cycle!, and a dashed line represents unstable equilibrium
the supercritical Hopf bifurcation@Fig. 3~a!#, as the param-
eter increases a stable equilibrium position bifurcates into
unstable position and a stable limit cycle. This is the simp
case, and corresponds, e.g., to the well-known van der
oscillator. In the subcritical Hopf bifurcation@Fig. 3~b!#, as

FIG. 3. The Hopf bifurcation.~a! Supercritical,~b! subcritical~Thompson
and Stewart, 1986!.
426 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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the parameter increases a stable equilibrium position an
unstable limit cycle coalesce into an unstable equilibriu
position. This case is more complex and appears in com
nation with other bifurcation phenomena. It is common
the flow-induced oscillation of structures, such as win
induced oscillation of bridges~Thompson, 1982; Thompso
and Stewart, 1986!.

B. Hopf’s theorem

To show the existence of a Hopf bifurcation at the o
cillation onset threshold and determine its type, we may
Hopf’s Theorem~Guckenheimer and Holmes, 1983!. Ac-
cording to this theorem, first we have to verify that at t
bifurcation, the system has a pair of pure imaginary roots
no other roots with zero real parts. This was done in
previous section. Next, we have to verify that, as the con
parameter~e.g., the subglottal pressure! varies and passes th
bifurcation value~i.e., the oscillation onset threshold!, these
roots cross the imaginary axes transversely. In mathema
terms,

d

dPs
@Re s~Ps!#uPs5Ps-onset

Þ0 . ~17!

Introducing Eqs.~13! and ~11!, we obtain

d

dPs
@Re s~Ps!#uPs5Ps-onset

5
t

mx0
Þ0. ~18!

Finally, we have to rewrite the equations of motion
the form

S u̇
v̇ D5S 0 2v

v 0 D S u
v D1S f ~u,v !

g~u,v ! D , ~19!

wherev is a constant,f (0,0)5g(0,0)50 ~i.e., there is an
equilibrium position at u50, v50!, and (] f /]u)(0,0)
5(] f /]v)(0,0)5(]g/]u)(0,0)5(]g/]v)(0,0)50, and
compute the parameter

K5
1

16
~ f uuu1 f uvv1guuv1gvvv!1

1

16v
@ f uv~ f uu1 f vv!

2guv~guu1gvv!2 f uuguu1 f vvgvv#, ~20!

where f uv denotes (]2f /]x ]y)(0,0), etc. IfKÞ0 then the
bifurcation is of the Hopf type, and a limit cycle is generat
at the bifurcation. Further, ifK.0 the bifurcation is subcriti-
cal, and ifK,0 it is supercritical.

We can write the equations of motion in the form show
in Eq. ~19! with the change of variables

u52vx, ~21!

v5 ẋ, ~22!

wherev5Ak/m, and letting

f ~u,v !50, ~23!

g~u,v !52
r

m
v1

2tPsv
m~2u/v1x01tv !

. ~24!

Note thatf (0,0)5g(0,0)50 as required by the theorem.
426Jorge C. Lucero: Hysteresis in vocal fold oscillation
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Next, we compute all the derivatives required by t
theorem, and evaluate them at the equilibrium positionu
50, v50 and at the bifurcation conditionPs5Ps2onset.
All of the derivatives of f (u,v) are identically zero. The
derivatives ofg(u,v) are

gu5gv5guu50, ~25!

guv5
r

mx0v
, ~26!

gvv52
2tr

mx0
, ~27!

guuv5
2r

mv2x0
2 , ~28!

gvvv5
6t2r

mx0
2 , ~29!

and replacing in Eq.~20! we obtain finally

K5
r

8mx0
2 S 3t21

1

v2 1
tr

mv2D.0. ~30!

The above result shows that oscillation onset is a s
critical Hopf’s bifurcation, at which an unstable limit cycle
generated. This same conclusion will be reached repea
the same analysis with the glottal half-widthx0 as the control
parameter

IV. HYSTERESIS AT OSCILLATION ONSET–OFFSET

A. Energy balance

In the previous section we found that the limit cyc
generated at the oscillation onset bifurcation is unstable.
unstable limit cycle cannot be observed physically; if w
could put the vocal folds exactly on the trajectory of th
limit cycle, any infinitesimal perturbation would take the
out of it. However, we know that the vocal folds are capa
of a stable steady state oscillation. Moreover, if we solve
equations of motion numerically with a subglottal press
just above the onset threshold value~as will be done later!,
we will find a stable limit cycle. We conclude then that th
observed oscillation of the vocal folds~stable limit cycle! is
not the same limit cycle generated at the Hopf bifurcation
the equilibrium position. Then, where does this stable lim
cycle come from?

To answer this question, we have to study the system
large amplitude oscillations. Unfortunately, the vocal fo
model is still complex and we cannot obtain a closed-fo
solution for the limit cycles. We will take then a more ind
rect approach, considering the exchange of energy betw
the glottal airflow and the vocal folds.

A criterion by Liènard states that an oscillator reache
steady state oscillation when the energies absorbed and
sipated in one cycle cancel out~Minorsky, 1983!. In their
oscillation, the vocal folds absorb energy from the airflo
and dissipate energy in the tissues~Titze, 1988, 1994!. Let us
compute those energies.

The energy dissipated in the tissues is the work done
the damping force
427 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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Wr5 R
cycle

rẋ dx5E
0

2p/v

rẋ2 dt. ~31!

To compute this integral, we need an expression forx(t).
Let us assume as an approximation that the oscillation m
be described by the sinusoid

x5A sin vt. ~32!

Replacing into Eq.~31! and integrating, we obtain

Wr5pA2vr . ~33!

The energy absorbed from the airflow is the work do
by the glottal pressure

Wg5 R
cycle

Pg~x!dx5E
0

2p/v

Pg~ t !ẋ dt. ~34!

Using again Eq.~32! for x(t), we obtain

Wg5AvE
0

2p/v

Pg~ t !cosvt dt. ~35!

We can rewrite this equation in a similar form to Eq.~33!

Wg5pA2vr g , ~36!

where

r g5
1

pA E
0

2p/v

Pg~ t !cosvt dt ~37!

is an aerodynamic damping factor. This aerodynamic dam
ing is equivalent to the one derived for the stability analy
of the equilibrium position@Eq. ~11!#, and we use the sam
symbol to denote it. Equation~37! is the general expressio
function of the oscillation amplitude, and it reduces to E
~11! whenA tends to zero.@For smallA, there is no airflow
separation andPg is given by Eq.~9!. Introducing Eq.~32!
and lettingA→0, we obtainPg5(2PsvtA cosvt)/x0, and
replacing in Eq.~37! and integrating we obtain Eq.~11!.#

We will use r and r g as normalized measures of th
energies dissipated in the tissues and absorbed from the
flow, respectively, in one oscillation cycle. Lie`nard’s crite-
rion will be then satisfied whenr 5r g .

Figure 4 shows a numerical example of the normaliz
absorbed energy versus the oscillation amplitude, at var
values of the airflow separation coefficientk0 . The solid line
represents results using the above equations, and the da
line represents results neglecting airflow separation in
glottis ~i.e., settinga05a2!. The dashed line shows that th
absorbed energy increases as the oscillation amplitude g
larger. This fact may be understood by considering that
transfer of energy from the airflow to the vocal folds
caused by the oscillation itself, so as the oscillation grows
amplitude, more energy can be transferred. However,
physical constraints the absorbed energy cannot grow to
finity. We see in the solid line that when airflow separati
in the glottis is included, the slope of the curve changes
certain oscillation amplitude. This amplitude is precisely t
amplitude at which the point of airflow separation mov
within the glottis. Airflow separation reduces the vocal fo
surface through which the airflow transfers energy to
vocal folds, causing the decrease in the absorbed energy
427Jorge C. Lucero: Hysteresis in vocal fold oscillation
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larger value ofk0 is adopted, then airflow separation with
the glottis starts at a larger glottal divergence angle. In
case, the change of slope of the energy curve occurs
larger oscillation amplitude, and the difference between
energy absorbed at zero amplitude and the maximum
sorbed energy increases.

B. Oscillation hysteresis

Based on the previous results, we will examine the
cillation dynamics through numerical examples.

Figure 5 shows curves of normalized absorbed ene
versus oscillation amplitude at various values of lung pr
sure. The normalized dissipated energy isr 51000
N s m23, indicated in the plot with a dashed line.

Let us consider how the oscillation starts and stops.
sume that the vocal folds are initially at rest at the equil
rium position and hence the oscillation amplitude is zero.
start the oscillation, the absorbed energy has to be incre
to a value above the dissipated energy. This will be acco

FIG. 4. Normalized absorbed energy versus oscillation amplitude, forPs

5320 Pa,x050.5 mm, andk051.1 ~1!, 1.3 ~2!, 2 ~3!. At the right, the
curves stop at the glottal closure.

FIG. 5. Normalized absorbed energy versus oscillation amplitude, fox0

50.5 mm andPs5295 Pa~1!, 301 Pa~2!, 308 Pa~3!, 315 Pa~4!. Dashed
line: normalized dissipated energy. Points A and B: stable limit cycle, p
C: unstable limit cycle, point D: cyclic fold bifurcation.
428 J. Acoust. Soc. Am., Vol. 105, No. 1, January 1999
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plished increasing the lung pressure, for example, to 315
~curve 4!. Since the absorbed energy at zero amplitude
larger than the dissipated energy, the oscillation amplitu
will grow following curve 4 until reaching a point of bal
ance, at point A. This point represents a stable oscillation
stable limit cycle. If a perturbation increases the oscillati
amplitude, the absorbed energy becomes smaller than
dissipated energy, and the oscillation amplitude will return
the balance point. The opposite will happen if the pertur
tion decreases the oscillation amplitude. In this case, the
sorbed energy becomes larger than the dissipated energy
the oscillation amplitude will grow.

We can now decrease the subglottal pressure to a v
lower than the value required to start the oscillation. F
example, 308 Pa~curve 3!. The oscillation amplitude will
decrease to the new point of balance B. Note that ther
also a second point of balance, point C. However, this is
unstable point. If a perturbation increases the oscillation a
plitude, the absorbed energy becomes larger than the d
pated energy, and the oscillation will continue growing
point B. If the perturbation decreases the oscillation am
tude, the absorbed energy becomes smaller than the d
pated energy, and the oscillation will continue decreasing
the equilibrium point at zero amplitude. Point C represe
then an unstable limit cycle, which is the limit cycle gene
ated at the subcritical Hopf bifurcation.

At a subglottal pressure equal to 301 Pa~curve 2!, both
limit cycles coalesce at point D. Below this pressure~curve
1!, there is no point of balance between the dissipated
absorbed energies, and hence no oscillation is possible. P
D is a bifurcation called cyclic fold, at which the unstab
and stable limit cycles coalesce and canceled each othe

We can plot the points of energy balance taking t
oscillation amplitude versus the lung pressure, as show
Fig. 6. In this figure, the stable points~stable limit cycle! are
plotted with solid line, and the unstable points~unstable limit
cycle! with dashed line. The square and triangle symb
indicate results obtained by direct numerical solution of
t

FIG. 6. Oscillation amplitude versus subglottal pressure forx050.5 mm.
Solid line: stable limit cycle, dashed line: unstable limit cycle. Point
subcritical Hopf bifurcation, point C: cyclic fold bifurcation. A-B-C-D: os
cillation hysteresis loop. Squares~stable limit cycle! and triangles~unstable
limit cycle!: results from direct solution of the equations of motion.
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equations of motion. The square is the amplitude of a sta
limit cycle @the maximum value ofx(t)# and the triangle is
the amplitude of an unstable limit cycle. We can see
significant difference between the analysis and the nume
results, which validates the sinusoidal approximation forx(t)
@Eq. ~32!# used in the energy analysis.

Increasing the subglottal pressure from zero, we nee
reach point A to start the oscillation. Point A is the subcr
cal Hopf bifurcation found in Sec. III; at this point, the un
stable limit cycle is generated and the equilibrium posit
becomes unstable. The subglottal pressure at this point is
oscillation onset threshold. As explained above, at this p
the energy absorbed from the airflow becomes large eno
to overcome the energy dissipated in the tissues. The o
lation will then start jumping to point B in the curve corre
sponding to the stable limit cycle. If we now reduce the lu
pressure, the oscillation amplitude will decrease followi
the curve, until we reach point C. At this point, the stable a
unstable limit cycles coalesce and disappear in a cyclic
bifurcation. The oscillation will then vanish abruptly. Th
subglottal pressure at point D is then the oscillation off
threshold, and it is lower than the onset threshold. Dur
this process, the oscillation amplitude follows a hystere
loop A-B-C-D. The oscillatory behavior shown in the figu
is the phenomenon called ‘‘oscillation hysteresis’’ by App
ton and Van der Pol~1922!.

Note that according to Fig. 6, oscillation offset~i.e., the
cyclic fold bifurcation! occurs at an oscillation amplitude a
which there is a change in the slope of the curve absor
energy versus oscillation amplitude, and recall that at
amplitude the point of airflow separation moves within t
glottis ~see explanation for Fig. 4!. Hence, the analysis pre
dicts that airflow separation within the glottis will occur
general during the oscillation cycle, except at the prec
condition of offset threshold.

We can also consider the glottal half-width as cont
parameter. Figure 7 shows curves of normalized absor
energy at various values of glottal widths. We can se
pattern for the curves similar to Fig. 5. In this case, to s

FIG. 7. Normalized absorbed energy versus oscillation amplitude, forPs

5400 Pa andx050.68 mm~1!, 0.66 mm~2!, 0.65 mm~3!, 0.64 mm~4!.
Dashed line: normalized dissipated energy.
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the oscillation we have to decrease the glottal width, so t
the absorbed energy at zero oscillation amplitude beco
larger than the dissipated energy. This will be accomplish
at, for example,x050.64 mm~curve 4!. This curve has only
one point of balance between the absorbed and dissip
energies, and it represents a stable limit cycle. The curve
x050.65 mm ~curve 3! has two points of balance, the le
point represents an unstable limit cycle and the right poin
a stable limit cycle. The curve forx050.66 mm ~curve 2!
shows a cyclic fold bifurcation, at which both limit cycle
coalesce. For larger glottal widths~curve 1! there is no point
of energy balance and hence no oscillation is possible.

Figure 8 shows the points of energy balance taking
oscillation amplitude versus the glottal half-width. We c
see also here a hysteresis loop A-B-C-D, similar to Fig.

C. Onset–offset ratio

We will derive an analytical expression for the onse
offset ratio, to examine its relation to vocal fold paramete
Recall from Figs. 5 and 7 that the onset threshold cor
sponds to an oscillation amplitudeA50, and the offset
threshold corresponds to an oscillation amplitude at wh
the point of airflow separation moves within the glottis.

At this amplitude

a25k0a1 . ~38!

Using Eqs.~1!, ~2!, and the sinusoidal approximation fo
x(t) @Eq. ~32!#, and solving for the value ofA such that there
is a unique solution to Eq.~38!, we obtain

a5
k021

A~k021!21v2t2~k011!2
, ~39!

where a5A/x0 is the normalized oscillation amplitude
Next, we compute the normalized absorbed energy at
oscillation amplitude. At this amplitude, there is no airflo
separation within the glottis throughout the oscillation cyc
except at the point where the glottal divergence is maximu

FIG. 8. Oscillation amplitude versus glottal half-width forPs5400 Pa.
Solid line: stable limit cycle, dashed line: unstable limit cycle. Point
subcritical Hopf bifurcation, point C: cyclic fold bifurcation. A-B-C-D: os
cillation hysteresis loop. Squares~stable limit cycle! and triangles~unstable
limit cycle!: results from direct solution of the equations of motion.
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Hence, we can use Eq.~9! for Pg(t) ~expression for no air-
flow separation in the glottis!. Replacing in Eq.~37!, and
letting d52vt be the phase delay of the upper edge of
vocal fold in relation to the lower edge, andu5vt, we ob-
tain

r g5
2Pst

x0
F~d!, ~40!

where

F~d!5
1

p E
0

2p cos2 u

11a sin u12da cosu
du. ~41!

In the above equations, lettingr 5r g , we obtain the point of
balance between the absorbed and dissipated energies
ther, lettinga50 we obtain the oscillation onset conditio
and lettinga equal to the value given by Eq.~39! we obtain
the offset condition. Considering only the subglottal press
and the glottal half-width as control parameters, we obt
the relation

~Ps /x0!uoffset

~Ps /x0!uonset
5

1

F~d!
. ~42!

Figure 9 shows values of the offset/onset ratio versus
phase delayd, and various values of the airflow separati
coefficientk0 . Note that according to the above equatio
the offset/onset ratio is only a function of these two para
eters. In general, the offset/onset ratio varies between 0.5
1. This range is in agreement with experimental valu
~Baer, 1981; Berryet al., 1995; Chanet al., 1997; Hirose
and Niimi, 1987; Koenig and McGowan, 1996; Munha
et al., 1994; Titzeet al., 1995!.

We see that at a given phase delay, the offset/onset
decreases~that is, the difference between onset and off
increases! as the airflow separation coefficientk0 increases.
Recall here the relation between coefficientk0 and the glottal
divergence angle at which airflow separation in the glo
starts, discussed for Fig. 4. Considering this result, we m
note that previous models of the vocal fold oscillation~e.g.,
Herzel et al., 1995; Steinecke and Herzel, 1995; Story a
Titze, 1995! have assumed for simplicity that airflow sep

FIG. 9. Oscillation offset/onset ratio@Eq. ~42!# versus phase delay, andk0

51.1 ~1!, 1.3 ~2!, 2 ~3!.
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ration in the glottis starts at zero degree of glottal diverge
angle. This assumption is equivalent to a separation co
cient k051, which leads to an offset/onset ratio equal to
Thus the present analysis predicts that those models sh
not be able to simulate the oscillation hysteresis pheno
enon.

D. Phase plane plots

The phase plane plots in Fig. 10 illustrate the dynami
behavior of the vocal folds, as the subglottal pressure is v
ied. They were obtained by direct solution of the equatio
of motion with numerical algorithms, and with paramet
values selected to provide a clear plot. Plot~a! corresponds
to a subglottal pressure below both thresholds, and show
stable equilibrium position at the origin. In plot~b!, we see
that as the subglottal pressure increases and becomes
the offset threshold, the trajectory curves become closer
gether in a region around the equilibrium position, anticip
ing the cyclic fold bifurcation. Plot~c! corresponds to a sub
glottal pressure just above the offset threshold. We see
two limit cycles have appeared from a cyclic fold bifurc
tion. The internal limit cycle is unstable, and the externa
stable. As the subglottal pressure continues to increase
see in plots~d! and ~e! that the internal unstable limit cycle
becomes smaller and closes around the stable equilibr

FIG. 10. Phase plane plots, forx050.5 mm, d530°, r 52000 N s m23, k
513106 N m23, and Ps5750 Pa~a!, 786 Pa~b!, 800 Pa~c!, 830 Pa~d!,
870 Pa~e!, and 900 Pa~f!. For clarity in the plots, no trajectory was plotte
between the limits cycles in plot~c!, and inside the internal limit cycle in
plot ~e!.
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position at the origin. Finally, as the subglottal press
passes the subcritical Hopf bifurcation at the onset thresh
unstable limit cycle and the stable equilibrium position co
lesce and the equilibrium position becomes unstable. Plo~f!
corresponds to a subglottal pressure above the onset th
old, we can see the unstable equilibrium position at the
gin, surrounded by the stable limit cycle.

V. CONCLUSIONS

This analysis has shown that the differences observe
vocal fold oscillation onset versus offset may be describ
through the phenomenon of oscillation hysteresis~Appleton
and van der Pol, 1922!. This phenomenon is produced by
combination of two bifurcations: a subcritical Hopf bifurc
tion at oscillation onset and a cyclic fold bifurcation at o
cillation offset, which occur at different values of the contr
parameters~e.g., glottal half-width or subglottal pressure!. It
is a consequence of the flow-induced nature of the vocal
oscillation; in fact, it appears commonly in other cases
flow-induced oscillations~Thompson, 1982; Thompson an
Stewart, 1986!.

According to this analysis, the oscillation offset–ons
ratio of vocal fold parameters is determined by the airfl
separation from a divergent glottis. Airflow separation see
to be a central issue to understand the vocal fold oscilla
dynamics. Pelorsonet al. ~1994, 1995! have already pointed
out that airflow separation is the main mechanism for
airflow control by the movement of the vocal folds. Also,
seems to determine the optimal glottal angle for ease of p
nation~Lucero, 1998!. These results indicate the importan
of an accurate modeling of the airflow separation, wh
should be a subject for further research efforts.
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