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Numerical solution of Rothenberg’s equation of the glottal
airflow rate as a function of the glottal area using backward
differentiation (L)
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ABSTRACT:
This letter shows the application of backward differentiation formulas to solve a differential equation by Rothenberg

[(1981). Department for Speech, Music and Hearing Quarterly Progress and Status Report (KTH Royal Institute of

Technology, Stockholm, Sweden), Vol. 22], which models the glottal airflow rate vs the glottal area. The formulas

avoid a singularity of the equation that occurs when the glottal area is zero and that prevents the application of

Runge–Kutta and other numerical methods. They can also be used when the equation is augmented with a glottal air

viscosity term to eliminate non-differentiability at glottal opening and closure.
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I. INTRODUCTION

When the fundamental frequency of the vocal fold

oscillation is below the first formant frequency of the vocal

tract, the relation between of the glottal airflow rate ug and

the glottal area ag may be characterized by a model devised

by Rothenberg (1981), of the form

PL ¼ Rug þ I
dug

dt
þ ktq

2

ugjugj
a2

g

; (1)

where PL is the lung pressure, R and I are the lumped input

resistance and inertance of the vocal tract, respectively

(combining both the subglottal and supraglottal airways),

kt is an empirical transglottal coefficient, and q is the air

density (see also Titze and Alipour, 2006). The model has

been useful to investigate the acoustical coupling between

the glottal source and the vocal tract and also in formant

synthesis of voice driven by glottal area (Rruqja et al.,
2014).

Equation (1) is a first-order differential equation of the

Riccati type, which has been well studied in the literature

(Murphy, 1960). However, its resolution is complicated by a

singularity when the glottal area is zero. Rewriting Eq. (1)

in standard explicit form dug=dt ¼ f ðt; ugÞ, where

f ðt; ugÞ ¼
1

I
PL � Rug �

ktq
2

ugjugj
a2

g

 !
; (2)

then we have that f ðt; ugÞ is not defined for values of t at

which agðtÞ ¼ 0. Therefore, if the model is used to compute

the airflow rate based on glottal area waveforms that include

periods of glottal closure, then numerical methods that

require computation of f ðt; ugÞ cannot be used. Such is the

case of explicit algorithms, such as the Runge–Kutta meth-

ods, and also some implicit algorithms, such as the trapezoi-

dal rule and higher-order Adams–Moulton methods. One

strategy to avoid the singularity has been to impose a mini-

mum small positive value for the glottal area (e.g., Titze,

2006) at the expense of generating an airflow leakage during

the glottal closure. Also, depending on the value of such a

minimum, the division by a small number may produce

numerical instability. Other studies have avoided the divi-

sion by ag by approximating the solution as a resistive flow

plus a small corrective component (e.g., Bennane et al.,
2015). However, such approximation has a general low

accuracy.

Then how may Eq. (1) be solved efficiently, accurately,

and including periods of full glottal closure? An answer is

through the application of multistep backward differentia-

tion formulas (BDFs) (Quarteroni et al., 2000), as this letter

will show.

Incidentally, let us note that the absolute value at the right

side of Eq. (1) is often simplified by replacing ugjugj with u2
g,

under the assumption that the transglottal pressure is non-

negative and consequently ug � 0 (Titze and Alipour, 2006).

However, brief periods of negative flow may appear in voice

simulations if the lung pressure is reduced to a small value

while ug is rapidly increasing. For example, letting

Idug/dt¼C>PL� 0, ag> 0, and solving for ug, we obtain

ug ¼
Ra2

g

ktq
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2a4

g

k2
t q

2
þ

2a2
gðC� PLÞ

ktq

s
< 0: (3)

Thus, this letter considers the model in the general form

expressed by Eq. (1).a)Electronic mail: lucero@unb.br, ORCID: 0000-0003-0597-3808.
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II. SOLUTION OF ROTHENBERG’S EQUATION

BDFs have the general form

ug;k ¼
Xm

i¼1

aiug;k�i þ hbf ðtk; ug;kÞ; (4)

where ug;k ¼ ugðtkÞ for k ¼ 1; 2; 3;…, ai and b 6¼ 0 are

rational coefficients, h ¼ tk � tk�1 > 0 is the time step,

and 1 � m � 6 is the order of the formula (the formulas for

m > 6 are not convergent). Equation (4) contains an implicit

relation for the unknown ug;k, which appears at the left side

and also as an argument to function f at the right side. In

general applications of BDFs, the relation is nonlinear and

must be solved iteratively. However, an explicit solution can

be obtained algebraically in the present case, as follows.

Inserting Eq. (2) into Eq. (4) results in the quadratic

equation

ug;kjug;kj þ 2bug;k � c ¼ 0; (5)

where

b ¼
a2

g;k

ktq
Rþ I

hb

� �
; (6)

c ¼
2a2

g;k

ktq
PL þ

I

hb

Xm

i¼1

aiug;k�i

 !
; (7)

and ag;k ¼ agðtkÞ. Considering both cases of ug;k � 0 and

ug;k < 0 and solving Eq. (5) for ug;k yields1

ug;k ¼ sgnðcÞ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ jcj

p� �
; (8)

where sgn denotes the sign function

sgnðxÞ ¼
1 if x > 0;

0 if x ¼ 0;

�1 if x < 0:

8><
>: (9)

The above Eqs. (6)–(8) do not have a division by ag;k,

and they produce the correct value of ug;k ¼ 0 for ag;k ¼ 0

(i.e., there is no airflow when the glottis is closed). Further,

the equations apply even if I¼ 0. In that case, Eq. (1) is

algebraic, and Eq. (8) gives its exact solution.

Figure 1 shows a numerical example. A symmetrical

glottal area curve was simulated with a truncated sinusoidal

waveform of an amplitude of 0.15 cm2, fundamental fre-

quency of 125 Hz, and open quotient of 0.6. The airflow rate

was computed with the above algorithm for a third-order

BDF, with m¼ 3, b ¼ 6=11; a1 ¼ 18=11; a2 ¼ �9=11; a3

¼ 2=11 (Quarteroni et al., 2000), and time step h¼ 0.02 ms.

The vocal tract parameters were set to R¼ 6 g/(s cm4),

I¼ 0.01 g/cm4, PL¼ 500 Pa, kt¼ 1, and q ¼ 0:00114 g/cm3

(Titze and Alipour, 2006). The airflow rate follows the area var-

iation with a skewness to the left (i.e., the pulse leans to the

right) due to the vocal tract inertance, and the algorithm is able

to simulate the closed glottis period with a zero airflow.

III. CORRECTION FOR SMOOTHNESS

As shown by the example in Fig. 1, at the time instants

of glottal opening and glottal closure (t1 and t2, respec-

tively), the resultant airflow rate is continuous but non-

differentiable. The non-differentiability is revealed by jump

discontinuities in the derivative, and it is a consequence of a

non-differentiable glottal area waveform at t1 and t2 (Lucero

and Schoentgen, 2015).

The glottal airflow derivative is an important compo-

nent in voice production studies, and its correct characteri-

zation demands its continuity with a smooth transition

between the periods of open and closed glottis (Fant et al.,
1985). A simple solution to obtain a differentiable airflow

rate is to add a pressure loss term for glottal air viscosity of

the form cug=a3
g to Eq. (1),

PL ¼ Rug þ I
dug

dt
þ ktq

2

ugjugj
a2

g

þ c
ug

a3
g

; (10)

where c is a positive coefficient. The effect of such a term

on the flow rate was observed by Ananthapadmanabha and

FIG. 1. (Color online) Numerical example of a glottal area curve (top), glot-

tal airflow rate computed with a third-order BDF (middle), and airflow rate

derivative (bottom). In the upper plot, t1 and t2 denote the time instants of

glottal opening and closure, respectively, and T is the oscillation period. In

the middle and bottom plots, the blue solid curves show solutions to the

model in Eq. (1), and the red dashed curves show solutions after adding an

air viscosity term as in Eq. (10).
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Fant (1982) and was also considered by Lucero and

Schoentgen (2015) in the context of an airflow model by

Titze (1984).

Again, the numerical solution to Eq. (10) must be

implemented so as to avoid any division by ag. BDFs still

apply, which result in the quadratic equation

ag;kug;kjug;kj þ 2b0ug;k � ag;kc ¼ 0; (11)

where

b0 ¼ 1

ktq
Ra3

g;k þ
I

hb
a3

g;k þ c

� �
: (12)

Solving Eq. (11) for both cases of ug;k � 0 and ug;k < 0

yields

ug;k ¼ sgnðcÞ
�b0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 þ a2

g;kjcj
q

ag;k

0
@

1
A
: (13)

Finally, multiplying and dividing by b0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 þ a2

g;kjcj
q

, we

obtain2

ug;k ¼
ag;kc

b0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b02 þ a2

g;kjcj
q : (14)

A quick proof of the differentiability of ugðtÞ at ag¼ 0

may be stated as follows. Multiply both sides of Eq. (10) by

a3
g and consider an approximate solution of the form ugðtÞ
¼ ra3

gðtÞ for agðtÞ small enough, where r is a non-negative

constant. Then

dug

dt
¼ 3ra2

g

dag

dt
; (15)

and replacing in Eq. (10) yields

PL ¼ rRa3
g þ 3ra2

gI
dag

dt
þ ktqr2

2
a4

g þ cr: (16)

For ag ! 0 and assuming that dag=dt is bounded, we obtain

r ¼ PL=c � 0 and constant. Therefore, the proposed approx-

imation holds. The airflow derivative dug=dt is then approxi-

mated by Eq. (15), which is defined and continuous for

ag¼ 0.

A numerical example is shown in Fig. 1, with c ¼ 0:01

g cm2/s and other parameters as in Sec. II for comparison.3

The resultant airflow rate is smooth and differentiable at the

instants of glottal opening and closure, without any other

relevant effect on the shape of the airflow pulse except for

an amplitude reduction.

IV. SUMMARY

BDFs provide a convenient method for the numerical

solution of Rothenberg’s glottal airflow model in Eq. (1),

with accuracy up to order 6. The resultant algorithm,

expressed by Eq. (8), avoids the singularity that appears

when the glottal area is zero. If the model is augmented with

a glottal air viscosity term for differentiability at glottal

opening and closure, then Eq. (14) must be used instead.

1See Eqs. (12)–(15) in Lucero and Schoentgen (2015), with c0 ¼ c,

c1 ¼ 2b, and c2 ¼ 1.
2See Eqs. (17) and (18) in Lucero and Schoentgen (2015), with c0 ¼ agc,

c1 ¼ 2b0, and c2 ¼ ag.
3The value of c ¼ 0:01 g cm2/s is much higher than the value obtained by

using the Poiseuille’s equation for flow between parallel plates (van den

Berg et al., 1957). That equation produces c ¼ 12lL2T, where l is the air

viscosity coefficient, L is the glottal length in the anterior-posterior direc-

tion, and T is the glottal depth in the direction of the airflow (Lucero and

Schoentgen, 2015). Letting l ¼ 0:000186 g/(cm s), L¼ 1 cm, and

T¼ 0.3 cm (Titze and Alipour, 2006), we obtain c ¼ 0:000 67 g cm2/s.

The higher value of c in Fig. 1 was chosen to produce a more visible

effect.
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