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Comparison of Measures of Variability
of Speech Movement Trajectories
Using Synthetic Records
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In speech research, it is often desirable fo assess quantitatively the variability of a set
of speech movement trajectories. This problem is studied here using synthetic
trajectories, which consist of a common pattern and terms representing amplitude
and phase variability. The results show that a technique for temporal alignment
of the records based on functional data analysis allows us to extract the pattern
and variability terms as separate functions, with good approximation. Indices of
amplitude and phase variability are defined, which provide a more accurate
assessment of variability than previous approaches.
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his work deals with the problem of extracting the common pattern

and variability from a set of speech movement records. It is a

follow-up from a previous article (Lucero, Munhall, Gracco, &
Ramsay, 1997) in which a new technique based on functional data
analysis (FDA; Ramsay & Silverman, 1997) was applied to extract the
pattern from such a set. That technique was based on performing an
optimal nonlinear transformation of the time scale (nonlinear time
normalization) so as to align the trajectories in time. The common
pattern was computed as the average of the normalized trajectories,
and the amplitude variability of the set was visualized by computing
the difference of each normalized trajectory from the average. Further,
the computed time transformations were considered as a representa-
tion of the phase variability of the set.

In Lucero et al. (1997), we concluded that the technique offered
some advantages over previous approaches for studying patterns and
variability (e.g., Smith, Goffman, Zelaznik, Ying, & McGillem, 1995).
We claimed that the computed average was visually closer to the actual
pattern of the trajectories than the average computed using other
techniques (such as the linear normalization used by Smith et al., 1995).
Also, the technique allowed us to extract both amplitude and phase
variability of the set as separate components, and to visualize the
distribution of such variability along the trajectory length. How-
ever, these conclusions were based only on visual inspection of the
results. The question of how well the extracted patterns and variability
approximated the actual pattern and variability of the set was left
unanswered.
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Similar problems have been considered in measures
of signal-to-noise ratio of speech signals (e.g., Neilson
& O'Dwyer, 1984; Strick & Boves, 1991). One such
measure for voice signal irregularity is the harmonics-
to-noise ratio (HNR:; Yumoto, Gould, & Baer, 1982),
defined as the ratio of the harmonic energy to the noise
energy of the voice signals. The harmonic component
of the signals is computed as the common pattern that
repeats cycle to cycle and the noise component as the
difference of each cycle to the harmonic component.
[t has been shown (Qi, 1992; Qi1, Weinberg, Bi, & Hess,
1995) that an accurate computation of the HNR re-
quires a nonlinear normalization of the individual cycles.
Following those results, the above FDA technique was
applied to compute the HNR of synthetic and recorded
signals (Lucero & Koenig, 2000), with the advantages
noted above. More recently, FDA nonlinear normali-
zation has been successfully used to assess variability
of glottal gestures in children versus adults (Koenig &
Lucero, 2002; Koenig, Lucero, & Lifgvist, 2003) and
to compare variability of simultaneous articulatory move-
ments under different phonetic conditions (Koenig et al.,
2003; Lucero & Lofgvist, 2003).

It might be useful to consider in more depth the
extraction of patterns and variability using FDA
because 1t 1s an interesting tool for studying aspects of
voice and speech production. Such study must be based
on a mathematical model of the signals and a clear
definition of the terms involving patterns and varia-
bility. Following this idea, the current work presents a
numerical experiment to assess the accuracy of the
FDA normalization technique. A simple mathematical
model will be used to generate trajectory waveforms, with
known components of variability. FDA nonlinear nor-
malization will then be used to assess how well it
predicts the actual variability of the trajectory set.

Previous approaches based on linear (Smith et al.,
1995; Smith, Johnson, McGillem, & Goffman, 2000)
and piecewise linear (Ward & Arnfield, 2001) normal-
ization will also be tested for comparisons with the
FDA technique. Linear normalization consists of line-
arly stretching the time scale of the trajectories to a
common length. Although this technique eliminates
length (duration) variation between the trajectories,
variation in the timing (phase) of events within the tra-
jectories still persists (e.g., see Figure 3 in Lucero et al.,
1997). Such phase variations could be due to variations
in speaking rate, insertion of pauses, phrase bound-
aries, or similar effects. Thus, variability measures
based on this approach are composite indices of both
amplitude and phase variability. Piecewise linear nor-
malization attenuates the effect of phase variability
by breaking the trajectories into intervals defined by
specific key events, which are prealigned first. Next,
linear normalization is applied within the intervals.

Although any phase variations at the key events are
removed by the prealignment, such variations still re-
main within each interval. Those variations will still in-
fluence the measure of variability, although in smaller
degree than measures using linear normalization. It
might be helpful to have separate measures of ampli-
tude and phase variability for a better assessment of
speech movement variations. In this way, variations
produced by speaking rate, pause insertion, and other
temporal effects could be analyzed separately from var-
1ations in the shape or amplitude of the movements.

Synthesis of Speech Movements

Speech movements with characteristics similar to
those used by Lucero et al. (1997) and Smith et al. (1995)
are considered: the vertical displacement of the lower
lip (in its combined motion with the jaw) during the
repeated production of the sentence “Buy Bobby a
puppy.” A simple way to produce repeated trajectories
with a common pattern is to assume that they are gen-
erated by a clock running at a central frequency w,.
Variations of this modeling technique have been used
in studies on voice perturbation measures (Lucero &
Koenig, 2000; Titze & Liang, 1993) to generate wave-
forms of known added variability.

In the absence of any variability, the clock produces
a pattern p(6) at each cycle, where 6 = [0, 1] is a mea-
sure of the clock’s phase, relative to the cycle length (we
consider this measure instead of the usual angular
phase = [0, 2nr], to avoid carrying a factor of 2r and thus
simplify the notation). The following expression is
adopted for the pattern:

10
p(8) = Z R(C, ) cos(2nn8) + 3(C,)sin(2rmn0) (1)

n=1

where R(C,,) and 3(C,,) are the real and imaginary parts,
respectively, of coefficients in Table 1. These values were
obtained by extracting the 2nd to 11th Fourier coef-
ficients of a lip movement displacement during the

Table 1. Fourier coefficients for Equation 1.
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Figure 1. Pattern p(8) used to generate speech trajectories.

Displacement

Phase

production of the above sentence at normal speed
(Lucero et al., 1997). The first coefficient is not used,
to produce a pattern with zero mean. Also, the mag-
nitude of the remaining coefficients was scaled to pro-
duce a trajectory with SD = 1. The waveform of p(0) is
shown in Figure 1.

The pattern is produced with the clock running at
a constant speed w,. Each cycle i of the clock produces
a trajectory x;(¢) = p[6(2)], with db/dt = w,, t = [0, T,],
8(0) = 0, 6(T,,) = 1. To simplify the explanation, and
without loss of generality, we consider dimensionless
quantities and set w, = 1 and T, = 1.

We assume now that the speed of the clock has
some variability, introduced by variations in the timing
of individual movements of the lips. Such variations
would be consequence of, for example, variations in
speaking rate, insertion of pauses, or phrase bound-
aries. At each cycle i, the speed is

E;=l+wHJ (2)

where y,(¢t) is a random function with zero mean across
repetitions, | vi(t) | < 1 (since dB,/dt cannot be negative),
t € [0, T;], 60) =0, 8;(T;) = 1, and T; is the new tra-
jectory length. Integration of this equation produces

0:(f) =t + &b (t) (3)

where &;(f) is the phase variability function

4
dilt) = / vi(w)du (4)
JA)

We also assume that there is some amplitude var-
1ability added to the clock’s output, introduced by var-
1ations in the amplitude or shape of the lip movements.
Then, each trajectory becomes

xi(t) = p[6;(t)] + B;(¢) (5)

where B;(f) is a random function with zero mean across
repetitions.

Combining Equations 5 and 3 we obtain the final
model

xi(t) = plt + &;(t)] + B;(¢). (6)

which will be used in the following sections to
generate speech movement trajectories.

The above explanation has used a clock frequency
of w, = 1. Assuming that this value is in hertz units,
then a lip trajectory pattern of a duration of 1 s would
result, which approximately matches the duration of
utterance “Buy Bobby a puppy” produced at normal
speaking rate (Smith et al., 1995). The pattern is
produced using a sampling interval of 1/200, which
also matches the sampling frequency of 200 Hz used by
Lucero et al. (1997) 1in their data collection.

Functions B,(f) and y,;(f) are produced by generat-
ing time series from a normal distribution with zero
mean. The series are next smoothed by filtering them
with a fifth-order low-pass Butterworth filter at 5-Hz
cutoff. This value was selected by visual inspection of
the results so as to obtain sets of trajectories that were
visually similar to sets recorded experimentally (Lucero
et al., 1997). It is also in agreement with results by
Smith et al. (2000), which show that in such lip tra-
jectories almost all of the energy (over 93%) is contained
within that frequency range. Finally, the standard
deviations of the filtered time series are set to a known
value. Parameters k3 and %, will denote the standard
deviations of B;(¢) and y,(¢), respectively. Function ¢;(¢)
is obtained by integration of y,¢), as described by
Equation 4. As an example, Figure 2 shows a set of
20 trajectories for ks = 0.2 and k&, = 0.1. Note that all
quantities in the text and figures are considered dimen-
sionless. Displacement is measured relative to a lip dis-
placement amplitude of SD = 1, and time (or phase) is
measured relative to a cycle length equal to 1.

Figure 2. Trajectories for ky; = 0.2 and k, = 0.1 (k; is the standard
deviation of the amplitude variability, and k, is the standard
deviation of the clock’s speed variability).

Displacement

338  Journal of Speech, Language, and Hearing Research » Vol. 48 » 3346-344 « April 2005



The model above is proposed just as a simple math-
ematical means to produce sets of waveforms sharing
a common pattern, and with known components of am-
plitude and phase variability. Although it reproduces
lip trajectory waveforms collected experimentally, the
model does not intend to provide a representation of the
underlying physiology that produces the trajectories.
Also, it does not say anything about how or at which
point in the speech production process the variability
1s actually introduced in the planned pattern. Relations
that might actually exist between phase, amplitude
variability, and the trajectory shape are missed by the
model. Its purpose is just to provide a simple means to
test techniques for variability assessments, as will be
done in the next section.

Extraction of the Pattern and
Variability Components

The problem to consider here may be stated as
follows: Given a set of N trajectories x;(¢), i = 1,..., N,
described by the above equations, extract the pattern
p and the variability introduced by functions B; and
¢;. This problem is, in general, indeterminate; that
is, there are infinite combinations of functions p, B;,
and &; that reproduce a given set of trajectories. How-
ever, a good approximation to its solution may be ob-
tained, provided that the variability terms &¢; and B;
are small enough so that they do not produce a large
distortion of pattern p in the trajectories x; (i.e., pro-
vided that the trajectories x; have the same general
“shape” as p).

To solve this problem, a nonlinear normalization
technique based on FDA may be applied. Details of the
algorithms and their practical implementation may be

found in the indicated references (e.g., Lucero et al.,
1997; Ramsay & Li, 1998; Ramsay & Silverman, 1997).
This technique first expands linearly all trajectories
to a common length (linear normalization), which is set
to a normalized value of 1. Next, a set of optimal trans-
formations of time (warping functions) A;(¢) is sought,
such that the distance of each normalized trajectory
x%(t) = x;[ht)] to their average x*(¢) is minimized
while satisfying a roughness penalty constraint.

Ideally, one would like to determine warping func-
tions satisfying

hit(t) = 0;(t) =t + b(2). (7)

In this case, the normalized trajectories x™(f) reduce to

x*(t) = p(t) + B7 (¢) (8)

where Bi(¢) = Blhi(f)]. Function B5(¢) represents the
amplitude deviation of each trajectory from the pattern,

at each instant of time. The pattern may be computed as
the average of the normalized trajectories; that is, x™(f) =
p(t), assuming that Bj(t) also has zero mean across
repetitions, and B;(¢) simply becomes the difference of
each normalized trajectory to the average.

Letting &3(t) = &;[h;(t)], we have from Equation 7
b (t) =t — hi(2). (9)

This function represents the time shift of each point
in the pattern p to the position of the same point in
trajectory i.

The normalized variability functions Bi(¢) and
&¥(¢) may be used to visualize the distribution of am-
plitude and phase variability, respectively, along the
trajectory pattern, and compute suitable indices, as
will be done in the next section. If required, a fre-
quency variability function may be also computed as
vi¢t) = doi(t)/dt, which represents variability in the
speed of the clock (or speaking rate) that produces the
trajectories.

In the simple case that there is no amplitude var-
iability, that is, B;(¢) = 0, and the measure of distance
of the normalized trajectories to their average for the
nonlinear normalization algorithm is the mean square
error

N 1
D=Y [ [ - d (10)
- 0

then the warping functions in Equation 7 are a mini-
mizer of D, producing D = 0, because x;(t) = x*(¢) = p(t).
It may be also shown that any other warping function
such that &(¢) = h(t) + &;[h;(t)] for an arbitrary function
o(¢) will also produce D = 0 (Wang & Gasser, 1997).

In practice, several factors complicate the compu-
tation of the above ideal warping functions. In
general, B;(£) is not identically zero. Also, the measure
of closeness used by the nonlinear normalization
algorithm includes a roughness penalty term, to avoid
excessive distortion of the trajectories (Lucero et al.,
1997; Smith et al., 1995). An additional complication
is that the algorithm might get trapped in local
minima and produce a warping function that is not
optimal. Thus, we may question how close the com-
puted warping functions are to the desired functions
hi(t) = 6, \(¢).

We consider this question through a numerical
example. Figure 3 shows results when the FDA non-
linear normalization is applied to the set of wavelets
i Figure 2. We can see (Figure 3c) that the extracted
pattern is very close to the actual pattern. The extraction
of amplitude and phase variability functions is evaluated
through their standard deviations (Figures 3d and 3e,
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Figure 3. Nonlinear normalization results for wavelets in Figure 2.
(a) Linearly normalized trajectories, (b) nonlinearly normalized
frajectories, (c) pattern, (d) standard deviation of amplitude
variability functions across trajectories, and (e) standard deviation
of phase variability functions across trajectories. Curves in full line
correspond fo computed functions, and curves in broken line
correspond to actual functions.
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respectively). These curves were produced by comput-
ing the standard deviations of the variability func-
tions across trajectories at each sample point in time,
and they represent the distribution of variability along
the pattern length. In the case of the phase variability,
note that the initial and ending values are zero. This
1s a consequence of the linear normalization that is
applied at the start of the FDA algorithm (Figure 3a).
Since all the linearly normalized trajectories start and
end at the same instant of time, then the phase var-
iability at those instants must be zero.

The computed phase variability provides a good
approximation to the actual curve. In the case of the
amplitude variability, we can note differences of shape
details between the computed and actual curves. How-

ever, the general shape and mean level of both curves
are close. The mean values of the standard deviation
curves for the actual amplitude and phase variability
are 0.2002 and 0.0113, respectively. The means of the
computed standard deviations were 0.1879 and 0.0110,
respectively, with errors of 6.1% and 2.6%.

Indices of Variability

After the variability functions have been extracted,
various indices may be defined and computed for quan-
titative assessment. For example, we may use the same
measures above: an index of amplitude variability
(IAV), defined as the mean of the standard deviation
of the amplitude variability functions B¥(¢), and an
index of phase variability (IPV), defined as the mean
of the standard deviation of the phase variability func-
tions b;(t).

Figures 4 and 5 show the computed and actual
values of IAV and IPV for a range of values of k; and
k,, respectively. For comparison with previous ap-
proaches for assessing variability (e.g., Smith et al.,
1995, 2000; Ward & Arnfield, 2001), the figures also
show the IAV computed as the mean of the standard
deviation of the unnormalized trajectories (to compute
the standard deviation, the trajectories are first zero-
padded to a common length) and of the linearly and
piecewise linearly normalized trajectories.

Linear normalization was used by Smith et al.
(1995, 2000) to compute an index of spatiotemporal
stability (STI). The STI is computed by using Fourier
interpolation to linearly normalize the trajectories and
they taking the sum of the standard deviations at 2%
intervals of the total trajectory length. It may be easily
shown that the STI is proportional to the linearly
normalized IAV defined above (small differences may
appear due to a waveform smoothing introduced by the

Fourier interpolation; see a discussion in Lucero et al.,
1997).

Piecewise linear normalization was proposed
recently by Ward and Arnfield (2001). In this case,
specific events of the trajectories, such as the maxima
of the curves, are first selected and aligned. Next, lin-
ear normalization is applied between those prealigned
events. Finally, the sum of the standard deviations at
2% intervals of the total trajectory is computed as a
variability index. Here, the same piecewise technique
was applied to the trajectories, but the index was com-
puted as defined above, to allow comparison of the
results.

Figure 4 shows variability indices when varying
the amplitude variability (kz), while the clock speed
variability is held constant at £, = 0.1. Figure 4a shows
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Figure 4. Indices of variability versus ks, for k, = 0.1 (constant).
(a) Index of amplitude variability and (b) index of phase variability.
Circles: actual values; triangles: computed values with unnormalized
trajectories; crosses: computed values with linear normalization;
stars: computed values with piecewise linearly normalized
trajectories; squares: computed values with nonlinearly normalized
trajectories.

that all indices increase with kg, as expected. The non-
linearly normalized IAV provides in general the best
approximation to the actual IAV value. The linearly
normalized IAV overestimates the amplitude variabil-
ity, because this measure is contaminated by the phase
variability of the trajectories. The same effect occurs
with the unnormalized IAV, which provides the worst
approximation. The piecewise linear IAV falls between
the linear and nonlinear indices, since it may be con-
sidered a hybrid of both approaches. However, it is
much closer to the nonlinear index and provides good
approximations to the actual variability at large val-
ues. As the amplitude variability grows large and the
phase variability becomes negligible in comparison,
all indices tend to converge. In the case of a zero am-
plitude variability, even the unnormalized IAV has a
positive value, as a consequence of errors introduced by
the phase variability of the set. Figure 4b shows that
the nonlinearly normalized IPV provides a good ap-
proximation to the constant phase variability of the
set. At low amplitude variabilities, the IPV underesti-

Figure 5. Indices of variability versus k., for ky = 0.2 (constant).
(a) Index of amplitude variability and (b) index of phase variability.
Circles: actual values; triangles: computed values with unnormalized
frajectories; crosses: computed values with linear normalization;
stars: computed values with piecewise linearly normalized
trajectories; squares: computed values with nonlinearly normalized
trajectories.
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mates the phase variability, because part of it 1s mea-
sured as amplitude variability by the nonlinear IAV.
For very large amplitude variabilities, the opposite ef-
fect occurs.

Figure 5 shows similar results when varying the
clock speed variability (k,) and consequently the phase
variability, while the amplitude variability is held
constant at k3 = 0.2. It shows that the nonlinearly
normalized IAV provides a good approximation to an
almost constant amplitude wvariability. The linearly
normalized [IAV again overestimates the variability
and increases almost linearly with &,, showing that
this index measures a combination of both amplitude
and phase variability. The same increase occurs with
the piecewise linear and the unnormalized IAV, al-
though these two indices seem to reach a saturation
level at large variability. Some of the indices also seem
to converge at large values of %,; however, note that
they all diverge from the actual IAV value and become
increasingly poorer. Again, the piecewise linear IAV
falls between the nonlinear and linear indices.
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Figure 6. (a) STl versus kg, for k, = 0.1 (constant) and (b) STI versus
k., for kg = 0.2 (constant). Circles: actual values; crosses: computed
values with linear normalization; stars: computed values with
piecewise linearly normalized trajectories; squares: computed
values with nonlinearly normalized trajectories.
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Finally, and for better comparison with the STI
measure of previous works, this index was computed
for the sets of synthetic trajectories in four different
ways:

1. Linear normalization, following the technique de-
scribed by Smith et al. (1995). First, the segment
between the first and last negative peaks of lip
velocity (i.e., the peaks of the first and last mouth-
opening movements) was extracted from each rec-
ord. Next, all segments were linearly normalized to
1,000 sample points using Fourier interpolation
with 10 harmonics. Finally, the STI was computed
as the sum of the standard deviation across records
at 2% intervals of the record length.

2. Piecewise linear normalization, following the
technique described by Ward and Arnfield (2001).
In this case, segments were first extracted from
each record as in the previous way. Next, the max-
ima of the lip displacement curves were identified
and aligned, while linearly normalizing the inter-
vals between maxima to produce a common total
length of 1,000 points. The linear normalization

was performed using cubic spline interpolation.
Finally, the STI was computed as in the previous
way.,

3. In this case, the extracted segments were non-
linearly normalized to a common length of 1,000
points using the FDA technique, and the STI was
next computed as in the first way.

4. The actual value of the STI was computed from the
amplitude variability functions B¥(¢).

Figures 6a and 6b show the computed STI results
for the same variability levels as in Figures 4 and 5,
respectively. The STI values approximately follow the
same behavior as the indices of the previous figures,
except for a change of vertical scale and small differ-
ences caused by the initial segment extraction proce-
dure. In general, we see that the nonlinearly normalized
STI provides a better estimation of the amplitude
variability of the set of trajectories than the linearly
normalized STI, which is affected also by the phase var-
iability of the set. The piecewise linearly normalized
STI values fall between the other two indices.

Discussion

The results have shown that the FDA nonlinear
normalization technique permits us to extract the
pattern and variability of a set of speech movement
trajectories with good approximation, when those
trajectories are modeled as in Equation 6. Amplitude
and phase variability are extracted as separate func-
tions, which may be used to visualize the distribu-
tion of variability along the trajectory pattern. The
variability of the set may be also assessed through
the proposed IAV and IPV indices, which measure the
actual amplitude and phase variability with good
accuracy.

One must be careful when looking at details of the
distribution of variability along the trajectory pattern.
The plot of amplitude variability in Figure 3d shows
that, although the general level and waveshape of the
variability distribution are recovered by the nonlinear
normalization, there are still differences in the details
of that shape. This might be an important issue to
consider with care when looking for regions that are
more and less variable within an utterance.

Indices of variability based on linear normaliza-
tion, such as the STI (Smith et al., 1995), measure a
combination of amplitude and phase variability. Thus,
the same measure may be produced by different levels
of amplitude and phase variability. For example, the
combinations k, = 0.1, k3 = 0.5 (see Figures 4a and 6a)
and &, = 0.2, ky = 0.2 (see Figures 5a and 6b) produce
the same linearly normalized IAV around 0.6, and
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linearly normalized STI around 30, although they have
very different components of variability. Also, two sets
of trajectories with the same level of amplitude and
phase variability but different shape (pattern) may
produce different variability indices (Lucero & Koenig,

2000).

The piecewise linearly normalized technique pro-
duces results that are between the linear and the
nonlinear normalization techniques. A disadvantage
of this technique is that it requires the user to select
specific events for the initial alignment, whereas
such selection is not required in either the linear or
the nonlinear techniques. A proper selection of events
may be unclear, for example, in the case of multi-
dimensional records of simultaneous articulatory move-
ments (e.g., Koenig et al., 2003; Lucero & Lofqvist,
2003). Also, the resultant transformations of the time
scale (warping functions) are piecewise linear and
consequently not smooth. Smoothness of the results
might be a desired characteristic, for example, for fur-
ther processing involving derivatives of the computed
functions.

The model used to produce the speech movement
trajectories assumes that amplitude and phase varia-
bility are added to the trajectory pattern as independent
components. However, other models for introducing
variability to speech trajectories might be used. For
example, variability in muscle forces acting on the lips
will translate into both amplitude and phase varia-
bility of the lip trajectories, in a way that depends on
their biomechanical characteristics (Lucero, 2002). To
analyze such a case, the model proposed here to gen-
erate speech trajectories is not adequate, because am-
plitude and phase variability will not be independent,
and a different procedure based on dynamical models
should be used. Such models might include theoretical
models of the lip dynamical structure (Gomi, Nozoe,
Dang, & Honda, 2003; Muller, Milenkovic, & MaclLeod,
1985), empirical models based on descriptions of the
trajectories using differential equations (Lucero, 2002;
Ramsay & Silverman, 1997), full models of facial bio-
mechanics (Lucero & Munhall, 1999), statistical and
neural network models of speech movement produc-
tion (Kuratate, Munhall, Rubin, Vatikiotis-Bateson, &
Yehia, 1999; Vatikiotis-Bateson & Yehia, 1996), and

others.

Similarly, other measures of variability are possi-
ble and deserve further exploration. For example, it
has been proposed that direct computation of variability
at the forcing level might permit a better assessment
of variability than measures at the displacement level
(Lucero, 2002). Such computation may be performed
by using principal differential analysis (Ramsay &
Silverman, 1997), which is another FDA technique

based on fitting a differential equation to the set of
trajectories, to extract their forcing functions.
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