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The harmonics-to-noise rati#iNR) has been used to quantify the waveform irregularity of voice
signals[ Yumotoet al,, J. Acoust. Soc. Am71, 1544-15501982)]. This measure assumes that the
signal consists of two components: a harmonic component, which is the common pattern that
repeats from cycle-to-cycle, and an additive noise component, which produces the cycle-to-cycle
irregularity. It has been showfd. Qi, J. Acoust. Soc. Am92, 2569-2576(1992] that a valid
computation of the HNR requires a nonlinear time normalization of the cycle wavelets to remove
phase differences between them. This paper shows the application of functional data analysis to
perform an optimal nonlinear normalization and compute the HNR of voice signals. Results
obtained for the same signals using zero-padding, linear normalization, and dynamic programming
algorithms are presented for comparison. Functional data analysis offers certain advantages over
other approaches: it preserves meaningful features of signal shape, produces differentiable results,
and allows flexibility in selecting the optimization criteria for the wavelet alignment. An extension

of the technique for the time normalization of simultaneous voice sigsalsh as acoustic, EGG,

and airflow signalsis also shown. The general purpose of this article is to illustrate the potential of
functional data analysis as a powerful analytical tool for studying aspects of the voice production
process. ©2000 Acoustical Society of Amerid&0001-496600)00310-6

PACS numbers: 43.70.Aj, 43.70.Dn, 43.70.Gr, 43.72AL]

I. INTRODUCTION ponent which is the periodic pattern that repeats through all
the wavelets, and an additive noise component which pro-
This paper deals with the problem of quantifying the duces wavelet irregularity. In the cited work, the harmonic
irregularity in the waveform of a voice signal. It has long component was computed as the average of the wavelets,
been known that measures of irregularity in the time and/oand the noise component as the difference of the wavelets to
amplitude domain may differentiate normal from abnormaltheir average. Since the wavelets have different lengths due
voice qualities, with the pathological samples showing moreo jitter, they were normalized in time by zero paddiing.,
extreme measures of irregularity than the normal samplefilling with zeroes each wavelet to the longest period, so that
(Lieberman, 1962; Titze, 199jiarhus accurate measures of they could be compared on a point-by-point basis.
waveform irregularity could be used as a noninvasive tech- Qi (1992 showed the limitations of the zero-padding
nique for voice evaluation and diagnosis. normalization: since the wavelets differ in length, a large
As pointed out by Q{1992, computing such measures portion of the computed noise will be caused by the length
of waveform irregularity presents the difficulty that an infi- irregularity. Thus voices with high values of jitter will nec-
nite amount of information is involved, in contrast to, e.g., essarily produce low values of the HNR, so that the HNR in
measures of fundamental frequency irregulafjityer) which  such cases does not provide an accurate indication of general
deal with a single parameter. The simplest approach is teaveform irregularity. A first solution to this problem would
compute the variability on the maximum amplitude of eachpe a linear expansion or compression of all wavelets to a
period (wavele} of the signal. However, this measure hascommon length. However, phase differences between wave-
limitations since it misses information at other points of thelets would remain, which would also contaminate the com-
wavelets. It is easy to see that wavelets of different shapesuted HNR. To illustrate this problem, a simple case of two
but the same maximum amplitude would produce a zeravavelets is shown in Fig. 1. In each plot, the broken line is
measure of irregularity by such an approach. the computed average. In the case of zero-padding normal-
As an improved measure, the harmonics-to-noise ratigzation (Fig. 1, top, the average clearly does not resemble
(HNR; Yumoto et al, 1982 was proposed, in which the eijther of the wavelets. It also has a point of discontinuity at
whole wavelet is used in the computation. The HNR assumeghe start of the zero-padding region. With linear normaliza-
that the signal consists of two components: a harmonic comion (Fig. 1, middle, a better continuous average is obtained,
although its shape is still different from those of the wave-
aEjectronic mail: lucero@mat.unb.br lets. To obtain a better average, phase differences between
DElectronic mail: koenig@haskins.yale.edu the wavelets should be removed. A more accurate computa-
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2 ¥ " " N T different optimization criteria may be adopted according to
15l the application.
’ This work will show the application of the FDA nonlin-
1t ear normalization technique to extract averages and compute
the HNR of voice signals. Results obtained for the same
0.5r signals using zero-padding, linear normalization, and dy-
0 ‘ . . , namic programming algorithms will also be presented for
0 200 400 €00 800 1000 1200 comparison. Our general purpose is to illustrate the potential
Sample number . .
2 ] . . i . of FDA as a powerful analytical tool for studying aspects of
the voice production process.
1.5¢
1 +
Il. MEASUREMENT OF VOICE SIGNAL IRREGULARITY
0.5¢ USING FDA
00 200 400 800 860 10‘00 1200 A. Nonlinear time normalization
5 . ‘ Samp'e'”“mbe’ i ' FDA has emerged in recent years as a set of analytical
i tools to explore patterns and variability in sets of data that
15¢ may be regarded as functional observatiamsay and Sil-
[ verman, 199Y. The term functional here means that, al-
b though the data may be observed and recorded discretely,
0,5;L they may be described by some function of time. A single
; ) functional observatiorz consists of a finite set of pairs
% 200 400 600 800 1000 1200 (tj.z;), wherez; is the measurefth sample ofz at timet; .
Sample number In FDA, the existence of an underlying functigit) is pos-

tulated, such that
FIG. 1. Methods of temporal normalization applied to the extraction of the

average(dashed ling of two wavelets. Top: zero padding. Middle: linear zi=y(t)+e€, 1)
normalization. Bottom: nonlinear normalization. ) ) )

where; represents an observational error or noise term. A

variety of analytical tools may be applied to extract the main
tion of the wavelet average and the HNR requires a nonlineacharacteristics of the functional data set. Such tools may re-
expansion or compression of the wavelets in time, so thadjuire evaluating such a functigr{t) at any particular instant
their shapes become alignélig. 1, bottom. Only in this  of time, and all its derivatives that exist at such an instant.
case may the average be considered as the common pattéiwo approaches may then be followegd) extractingy(t)
of the wavelets. To accomplish an optimal wavelet align-from the raw data by filtering out the noigee., by smooth-
ment, Qi(1992 applied a dynamic programming algorithm. ing the data or (2) leaving the noise in the data and requir-
In later works(Qi et al, 1995; Qi and Hillman, 1997 un-  ing smoothness of the results of the analysis. In the present
constrained dynamic programming and zero phase transfocase, smoothing the raw data would eliminate or attenuate
mation were used for the alignment. The zero phase transhe same irregularity we want to assess, so the second ap-
formation simply removes all phase-related information fromproach will be followed. We will align the raw voice wave-
the wavelets prior to computation of the HNR; however, thislets by requiring a smooth expansion or compression of the
approach produced in general poorer measures of wavefortime scale. We describe briefly the FDA algorithm for non-
irregularity than nonlinear normalization, according to testdinear time normalization. For more details, we refer the

using synthetic signali et al,, 1995. reader to the cited referencésuceroet al,, 1997; Ramsay,
A similar issue has been recently discussed in the cas&998; Ramsay and Li, 1998; Ramsay and Silverman, 1997
of speech movement signalkucero et al, 1997. In that Let us denote the set of wavelets to normalizeds),

work, three techniques for extracting the average of a set aftherei=1,...N, andN is the number of wavelets. For sim-
speech wavelets were considered, namely: un-normalized aplicity, let us assume that all the wavelets have the same
eraging (equivalent to zero padding, Fig. 1, fodinearly  length, fromt=0 to t=1. For each wavelet, a strictly in-
normalized averagingas in Fig. 1, middlg and nonlinearly  creasing and smooth transformation of tifmgt) (warping
normalized averagin¢as in Fig. 1, bottomn To achieve the function) is determined, such that each normalized wavelet
nonlinearly normalized average, a new algorithm based on .

functional data analysi&"DA; Ramsay, 1998; Ramsay al., X (O =x[hi(t)] @)
1996_; Ramsay and Li, 1998; Ramsay and S_ilverman, L997¢ close in some measure to their average

was introduced. It was argued that this algorithm has advan-
tages over previous dynamic programming because the re- __
sults are smooth and differentialfaus allowing for further X(=y5 ;1 X7 (1). ()
processing it does not require users to select one of the

wavelets as a reference or template for the alignment, anSuch a transformation is defined as

N
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toy nals are recorded simultaneousb.g., acoustic, EGG, oral

hi(t):AL elovitvd gy, (4 airflow, and other voice signalst might be desirable also to
normalize them simultaneously, to keep their synchrony in

wherew;(t) is the relative curvature dfij(t) (to be deter- time. Also, simultaneous normalization may be applied to

mined optimally, v is an integration variable, and coefficient reveal phase relations between the signal sets.

A'is selected so thdt;(t) = 1. Given any functiow;(t) such For this case, instead of scalar-valued wavelets, one may

that the integrals in Eq4) exist, this equation will produce consider vector-valued wavelets such as

a strictly increasing and twice differentiable functib(t). _ .

Different measures may be used to evaluate the close- Xi(t) =[Acoustics(t), EGG(1), Airflow;(1),.. ]". (@)
ness of the normalized records to their average, according ®he warping functions are still scalar functions, which simul-
the particular application. Here, the measure taneously align all the components of the wavelets.

1 1 The cost function has now the general expression
F(Xi,w, ,a,x)zfo a(t)[xr(t)—?(t)]zdtﬂxfo w?(t)dt

©)
is adopted, wherex(t) is a weighting function and is a 1
positive constant. The first integral is the classic squared er- +)\f wiz(t)dt, 8
ror measure used in dynamic programming algoriti@s 0
1992; Qiet al, 1995; Qi and Hillman, 1997 The weighting  whereA(t) is a matrix of weight functions.
function «(t) may be used to emphasize alignment in par-
ticular regions of the wavele{dy setting a larger value of
a(t) at those regionls The second integral incorporates a - Indices of irregularity
penalty for the roughness of the warping function, controlled

F(x Wi ,AN)= fol[xi*(t)—?(t)]TA(t)[xi*(t)—F(t)]dt

by parametein (the larger the value ok, the smaller the We consider here two indices of irregularity. The HNR
curvature ofh;). (Yumotoet al, 1982,

Hence, the problem consists of estimating the curvature NS5 2(1)dt
functionsw;(t) in Eq. (4) that will minimize the total mea- HNR= 0 (9)
sure(cost function SISOl () —x* (1)]2 dt

N and an index of nonlinear warpindNW), defined as the

C(Xg,- XN Wy, e Wy ,a,?\)zizl F(xi,wi,a,N). (6)  mean of the root-mean-squared values of warping functions

Ah;(t):
This minimization problem may be solved by using an ex- | LN
pansion of[iw;(t)dt into a basis of B-spline functions, as INW= — /flAh- ndt 10
described by Ramsay and Silverm@®97 and Lucercet al. N .21 0 (Ddt. (10

(1997).
The algorithm assumes that all the wavelets have th@|. EXAMPLES WITH SYNTHETIC SIGNALS
same length from 0 to 1. It is possible to modify it to accom-A Signal
modate wavelets of different lengths and time spans. How-" 'gnais
ever, it is computationally much simpler to interpolate all We first applied the above techniques to synthetic sig-
wavelets to a common length and attribute to this length amals, in order to determine the relative accuracy of the dif-
artificial [0, 1] time span before applying the nonlinear nor- ferent approaches. To allow comparison with previous work,
malization. The results should be the same in either case. we synthesized signals following the equations given by
After the wavelets have been optimally aligned in time, Titze and Liang(1993.
we extract the normalized averag&(t) and the normalized We set the instantaneous frequency of the signals to
noise components’* (t)—x*(t), i=1,...N. We also com- _ .
pute the expressio;:hi(t)=hi(t)—t, i=1,..N, which rep- fe()=To(1+K;sin2mfot/10)), (1)
resents the amount of nonlinear warping or phase shift fowheref, is the center frequency, artk is a parameter for
each wavelefif no warping is required, theh;(t)=t and frequency variability. For simplicity, we adopted a sinusoidal
Ah;(t)=0]. The irregularity of the set of wavelets may then frequency modulation instead of a random modulation. The
be seen in the above functions or related ones. For exampl#stantaneous phase is
one may compute the standard deviation of bgtiit) and

t
h;(t) across theN wavelets, to visualize how the waveform 0(t)=f 27f (t)dt. (12
irregularity and phase irregularity are distributed along the 0
wavelet period0, 1]. The signal is then synthesized as
X(t)=y[ 6(t)]+ K, Randrt), (13

B. Extension to simultaneous signals where y(6) is a periodic functionK, is a parameter for

The above algorithm may be easily extended for simul-amplitude variability of the signal noise, and Rangnis a
taneous normalization of sets of signals. When various sigfunction that generates a random value from a normal distri-
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0 normalization using the above FDA algorithm. For compari-
son, we also applied the Dynamic Programming algorithm
given by Qi(1992. Let us briefly recall that this algorithm

computes a warping function by minimizing the total square

1 " " N Twenty individual cycles were then identified as the portions
with 27(n—1)<60<2wn, n=1,...,20, and arranged as a set
0.5¢ 1 . )
of 20 waveletgthis number of wavelets was used to insure
~ 0 1 statistical validity of the results yet to keep the processing
i task manageableEach set of wavelets was then normalized
—0.5¢ in time applying zero-padding, linear normalizatiGmsing
-1 : ; ; cubic spline interpolation; Prest al, 1992, and nonlinear
5 10 15 20 25
6

—_

>~0.5¢t | error (cos) between the aligned wavelet and a template, with
higher and lower limits imposed to the warping as con-
straints. The template is chosen as the wavelet with the mini-

0 mum total cost compared to all the other wavelets. After

0 5 10 15 20 25 aligning all wavelets, the mean total cost is the noise energy
[denominator in Eq(8)] divided by a factor of\.
For FDA normalization, we we set functian(t) in Eq.
(5), to a constant value of 100Qe., giving the same weight
to alignment along all the wavelet lengthThe constant
value was selected so as to have cost function values in the
range 1-100, to facilitate the application of the optimization
, ) ) , Matlab routine(BFGS quasi-Newton algorithm; Pressal,
0 5 10 15 20 25 1992 available in its standard toolboxes. The roughness pen-
6 alty parameter was set at=1. This value was selected by
FIG. 2. Synthetic signals used to test the algorithms. Top: sine wavevIsual mspecthn of th.e r(-':‘gults, SO as to a”(.)W al'lgnment of
Middle: EGG analog. Bottom: mouth pressure analog. the wavelets without significant waveform distortion.

After the normalizations, we computed the HNR and, in
the case of nonlinear normalization with FDA, the index of
nonlinear warpingINW). Also, we computed the signal-to-
noise ratio of the train of cycles

bution. We considered various functions #g6): (a) plain
sine wave(Fig. 2, top

y(6#)=cog0), (14
. . . o IoyA 6(t)dt
(b) EGG analogFig. 2, middlg, using the expressiofTitze SNR= —7 —, (17
and Liang, 1998 Jolx(t)—y[o(t)]}~ dt
0.91-cog26)], 0s6<m/2 wherex(t) andy(t) are the signals before and after the ad-
y(o)= 0.91-cog20/3+27/3)], ml2<6<2w dition of noise(amplitude variability, respectivelysee Eq.

(15) (13)], andT is the train’s length. Since the SNR measures the
ratio of the energy of the signal without noise to the noise
energy, it may be regarded as the “true” HNR value. Hence,
we consider computed HNRs that are closer to the SNR to be
more accurate. Let us remark here that the objective of non-
y(6)=2.182, RealC,)cogn6)+Imag Cy)sin(no), linear normalization is to obtain an HNR value that is close
n=o (16) to the SNR[as defined in Eq(17)] by aligning the wavelets

- ) while keeping their general shape.
whereC,, are the coefficients in Table |. These values were

obtained by first synthesizing a mouth pressure analog signal

using the technique described by Titze and Liéh@93, and ~ TABLE | Fourier coefficients for Eq(16).
then extracting its first 11 Fourier coefficients. Coefficient
2.18 sets its peak amplitude to 1.

and (c) mouth pressure analo@rig. 2, bottom), using the
expression

10

=}

Cn

—0.000 16+i0
0.068 83+i0.011 02
0.049 44-10.078 75
—0.03122-i10.095 82
—0.17036-i0.049 38
0.029 29+i0.073 95
0.022 15-i0.020 59
0.034 19-10.000 90
—0.001 43-i0.005 95
—0.00056-10.001 16
—0.000 24-i10.000 29

B. Processing and results

All the algorithms were implemented in Matlab, and run
on a personal computer. Trains of cycles of the three signals
were synthesized using a sampling frequency of 10 kHz and
center frequency,= 150 Hz. Wide ranges of values fét,
and K; were considered, from @no irregularity to K,
=0.1 andK;=0.6 (large irregularity, as assessed visugnlly

WO ~NO O~ wWNEO

=
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FIG. 4. Average componeifitop), noise componentgniddle), and warping
FIG. 3. Mouth pressure wavelets fét,=0.05 andK(=0.4, after zero-  functions(bottom) of wavelets in Fig. 3, with nonlinear normalization.
padding normalizatior{top), linear normalization(middle), and nonlinear
normalization(bottom).

Figure 3 shows an example of the mouth pressure wave-
lets[Eqg. (16)] for K,=0.05 andK;=0.4, after zero-padding
normalization(top), linear normalization(middle), and non-
linear normalization with FDA(bottom). We can see that
nonlinear normalization aligns the wavelets by removing all
phase variability. Figure 4 shows the extracted averige)
after nonlinear normalizatioftop), the noise components of
the normalized signalg;(t) —x* (t) (middle), and the phase 1
shift functions Ah;(t) (bottom. The average matches the
common pattern of the wavelets, and the noise is uniformly
distributed along the wavelets. The HNR-.76 dB with
zero padding, 6.69 dB with linear normalization, 15.0 dB
with nonlinear normalization using Dynamic Programming,
and 18.54 dB with nonlinear normalization using FDA. The
SNR is 17.82 dB. Clearly, the HNR with nonlinear normal-
ization using FDA produces the best approximation to the 2
SNR of the four methods.

0 0.2 04 06 08 1
Normalized time

0.4 0.6 0.8 1
x 107 Normalized time

It is instructive to compare the resultant waveforms pro- &£ 0 N\,\
duced by the two nonlinear normalization methods. Figure 5 3_2 N {\l\
shows one of the wavelets after nonlinear normalization by 8 :

Q.

both methods, and the phase shift functiaig(t). We can
see that the normalized wavelet with FDA maintains the _ ) . ) )
same original shape with a smooth phase shift. On the other 0 0.2 04 06 0.8 1
hand, the normalized wavelet with Dynamic Programming Normalized time

has noticeable distortior(g.g., compare the shapes of peaksFiG. 5. Comparison of nonlinear normalization results using FDA and Dy-

and valley$. These distortions are the consequence of amamic Programming. Top: linearly normalized wave(dashed ling and
irregular(nonsmooth phase shift function. normalized Wave_let using FD/§solld line). Mldgﬂe. I|nearly normallzed_

. R wavelet(dashed lineand normalized wavelet using Dynamic Programming
Figure 6 shows results when the frequency variability of(soiid ling). Bottom: phase shift functions produced by FD#mooth curve

the signal is fixed t&; = 0.4, and the amplitude variability is and Dynamic Programmingiscontinuous curve
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FIG. 6. HNR (top) and INW (bottom) versus amplitude variabilitK , , for FIG. 7. HNR (top) and INW (bottom) versus sampling frequency, fét,

K{=0.4. Circles: nonlinear normalization using FDA. Stars: nonlinear nor-=K;=0. Circles: nonlinear normalization using FDA. Stars: nonlinear nor-

malization using Dynamic Programming. Crosses: linear normalizationmalization using Dynamic Programming. Crosses: linear normalization.

Squares: zero padding. Triangles: SNR. Squares: zero padding. The ideal values of the HNR and INW should be
HNR=SNR=% and INW=0.

in the rangeK ;=0 to 0.1. The nonlinearly normalized HNR

using FDA measures the SNR with good accuracy. The HNRyetween sampling frequency and signal central frequency,
using Dynamic Programming produces results similar toyhere nonlinear normalization using Dynamic Programming
FDA at large values oK,, but the results worsen &S,  nroduces higher values.

decreases. Both the zero-padded HNR and the linearly nogq,,re g shows results when the amplitude variability of the

malized HNR are almost constant, since they measure mos.t!%‘lgnal is fixed toK ,=0.05, and the frequency variability is

the frequency and phase variability of the wavelets, which IS e rangeK ;= 0—0.6. Both nonlinear normalization meth-

also constant. The lower plot shows the index of nonlinear ds vield an HNR that | d imation to the al i
warping versus the amplitude variability. It is approximately0 S yield an atis a good approximation to the aimos

constant in the whole range, reflecting the constant frequenc§Pnstant SNR, and in general, nonlinear normalization with

variability. DA is more accurate than Dynamic Programming. Both the

Figure 6(top) also shows that, as the amplitude variability Zero-padded and linearly normalized HNR decrease as the
tends to 0, the SNR tends to infinity. However, the HNRfrequency and phase variability increase. We also observe
with both methods of nonlinear normalization reaches dhat the index of nonlinear warping increases with the fre-

maximum finite value ak,=0. This is a consequence of quency variability, as required.

errors introduced by discretization at the sampling fre-The results with sine waves and EGG analogs are similar to
quency, and numerical errors produced by the algorithms. Téhe ones shown for the mouth pressure analog. According to
assess the degree.of precision of the algorithms and test thgese results, the nonlinearly normalized HNR using FDA

effect of the sampling frequency, we set béth andK 10 yregicts the SNR of the signals with good accuracy. Further,

zero, and varied the sampling frequency. Figure 7 shows the, ¢ 1o using FDA are better than results using Dynamic Pro-

computed HNR for the four methods and the index of non'gramming, in the sense that the HNR is usually more accu-

linear warping. In general, as the sampling frequency in- . .
creases tr?e SNR ir?creases and INW derc)reé?deallc;/ thez rate and the resultant normalized wavelets and phase shift
should be infinite and zero, respectivelyhe dips and peaks fUnctions are smoother with FDA, whereas Dynamic Pro-
of the HNR and peaks of INW correspond to integer rela-9ramming introduces significant shape distortions in the
tions between the Samp“ng frequency and Central frequencwavelets. The I’esults a|SO ShOW that nonlinear normalization
of the signal. In general, the nonlinear normalization withis less sensitive to frequency variability than linear normal-
FDA produces more accurate values of the HNR than thézation or zero padding, thus reducing the effect of jitter on
other methods. The only exceptions occur at integer relationthe HNR.
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FIG. 9. Recorded acoustitop), EGG (middle), and airflow(bottom wave-
lets for normal speaker A.

IV. EXAMPLES WITH RECORDED VOICE SIGNALS acoustic, EGG, and airflow wavelets, respectively, and
EROM NORMAL SPEAKERS A=0.1. These values were selected following the same crite-

ria as in the case of the synthetic signals. The lower value of
«a for the acoustic wavelets is a consequence of their larger
We next tested the FDA normalization with recordedamplitude values. Selecting a proper valuecoimight be
voice signals. We collected simultaneous acoustics, EGJacilitated by normalizing all wavelets in amplitude prior to
and oral airflow from two normal adult subjects producing athe nonlinear normalization, e.g., by dividing the wavelet
sustainedd/. One of the subjectéA) was female, age 33, amplitudes by their peak amplitudg$vang and Gasser,
and the otherB) was male, age 28. The airflow was re- 1997.
corded using an undividetbral-nasal Rothenberg mask, Figure 9 shows the three sets of wavelets for subject A.
and a Glottal Enterprises MSIF-2 filter. The acoustics waslhe three sets have some phase variability, apparently larger
recorded with a Seimheiser MKH 816T directional micro- in the acoustic and airflow wavelets. We can also note a large
phone placed outside the mask. The EGG was recorded witlic component in the EGG wavelets, probably produced by
a Synchrovoice Research Electroglottograph and Glottal Envertical movements of the larynx during the recording.
terprises Linear Phase Filter and Digital Delay LPHP-2, with Prior to the FDA normalization, the wavelets were
settings at 3-kHz frequency limit, no delay, no coupling, andaligned vertically by removing their mean. An alternative for
high-pass filter at 5 Hz. All signals were low-pass filtered atperforming a vertical alignment may be to use the first or
4.8 kHz and digitized at 10 kHz with 12-bit precision. Using second derivative of the wavele(Ramsay and Silverman,
the same sampling rate for all signals facilitated the applical997. After the derivatives have been normalized in time,
tion of the normalization algorithms. then the computed warping functions may be used to normal-
For each subject, the signals were inspected using a sigze the original wavelets. We adopted the first alternative as
nal visualization program, and a stable segmene which  being computationally simpler, and because the alignment is
showed the smallest level of amplitude and pattern variabildone directly on the signals whose irregularity is analyzed.
ity through all cycles, as assessed by visual inspectias  The effects of different methods of alignment is a topic that
identified, from which 20 consecutive wavelets were ex-requires further study.
tracted from all the three signals. That is, we extracted 3
simultaneous set&coustics, EGG, and airflgvaf 20 wave- B. Results
lets each. The wavelet boundaries were determined on the
EGG using the method of zero crossings with low-pass fil-  Figure 10 shows all normalized wavelets for subject A.
tering (Titze and Liang, 1998 Nonlinear normalization was The computed indices for all wavelets are listed in Table II.
next applied using weighte=0.001, 0.01, and 0.01, for the In all casegexcept the airflow HNR for subject)Athe HNR

A. Signals
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2000 - - - ‘ lower values of INW on the EGG suggest that a large phase
variability is introduced into the voice above the level of the

1000 . L
§ larynx. This phase variability is produced as a consequence
£ 0 of the vocal tract filtering of the voice source, since different
g harmonies of the glottal signal are filtered at different gain

and timeshift, according to their frequency.

: : : : The HNR values with Dynamic Programming are in
0 0.2 Nodfmanzed t?r'ge 0.8 1 general a bit lower than values with FDA, except in the case
1000 ; ; : . of the airflow for subject A. In the case of EGG for subject
A, the HNR results using Dynamic Programming are lower
than the value computed with linear normalization. The re-
sultant waveforms show a similar degree of distortion to the
example with synthetic signals shown in Fig. 5, which also
leads us to question the validity of the HNR measures for the
. . , Dynamic Programming normalization. Recall that the objec-
0 0.2 04 06 0.8 1 tive of nonlinear normalization with FDA is to obtain an
N?rmal'zed time HNR value that is close to the SNRs defined in Eq(17)]

by aligning the wavelets while keeping their general shape.
FDA preserves the wavelets’ shapes by introducing a rough-
ness penalty constraint in the algoritjsecond integral in
Eqg. (5)]. Dynamic Programming, on the other hand, mini-
mizes the square error measfiiest integral in Eq(5)] only.
Since this measure appears in the denominator of the HNR’s

Amplitude

Amplitude

0 0.2 0.4 ‘ Qfs 0.8 1 definition [Eq. (9)], we may then state that Dynamic Pro-
Normalized time gramming uses the maximization of the HNR as the criterion
FIG. 10. Normalized acoustittop), EGG (middle), and airflow (bottory 10 alignment(see also Qi, 199_2 However, a higher vglue
wavelets for subject A. of the HNR does not necessarily mean that the value is more

accurate. Higher values of the HNR may also be produced by

values are the highest for nonlinear normalization using=DA nonlinear normalization, if lower values of the rough-
FDA, since all phase and frequency variability have beemess penalty coefficiet are adopted, at the cost of distort-
removed by the normalization. We note that the acoustic#1g the wavelets’ shapes.
and oral airflow have similar values of the HNR after non-
linear normalization with FDA, even when the values of
HNR using zero padding are a bit different, as in the case oE Simultaneous normalization
subject B. They also require similar amounts of time warp-—"
ing. A possible interpretation for these results might be that, In the previous results, each set of wavel@soustics,
since the airflow and acoustics are signals produced at theGG, and airfloy was normalized separately. As a result,
same leveloral outpu}, then one might expect similar indi- the normalized wavelets are no longer synchronized in nor-
ces of amplitude and phase irregularity in both of them. Themalized time. To keep their synchrony in normalized time,
difference between the acoustic and airflow indices prior taone must perform a simultaneous normalization.
nonlinear normalization would then be an artifact produced  For this, we used vector-valued wavelets, as explained
by phase shifts between wavelets. in Sec. Il B. Each wavelet was considered three-dimensional,

We note also that, in both subjects, the EGG signalsvhere the three dimensions correspond to the acoustic, EGG,
have the highest HNR, and require the least warping. Thand airflow components. The simultaneous normalization

TABLE Il. Computed HNR values for recorded voice signals in normal speakers. ZP: zero-padded HNR; LN:
linearly normalized HNR; DP: nonlinearly normalized HNR using Dynamic Programming; FDA: nonlinearly
normalized HNR using FDA; INW: index of nonlinear warping.

Signal ZP(dB) LN (dB) DP (dB) FDA (dB) INW
Subject A, female, age 3F,,=148.5 Hz? Jitte=1.1 HZ
Acoustics 6.7 7.5 10.8 15.9 0.0063
EGG 21.3 27.2 26.8 30.9 0.0030
Airflow 10.6 10.8 134 124 0.0062
Subject B, male, age 2&,,=109.8 Hz? Jitter=0.9 HZ
Acoustics -1.7 —-0.6 9.2 13.7 0.015
EGG 19.6 24.3 27.1 28.6 0.0054
Airflow 8.6 9.1 15.7 15.9 0.017
aMean of 1T, i=1,...,20, where€T; are the wavelet lengths.

bStandard deviation of T/ .
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TABLE Ill. Characteristics of signals from Kay Elemetrics Voice Disorders Dataliéag Elemetrics, 1994

Speaker Filename Age Sex Diagnosis Characteristics aJitter Shimmef NHR? DSHP
SLM SLM27AN.NSP 20 M hyperfunction; anterior— moderate shimmer 2.525 14.26 0.233 0
posterior squeezing and
ventricular squeezing: head
trauma; unilateral paralysis;
7 days post-intubation
TPS TPS1GAN.NSP 39 M unilateral paralysis moderate shimmer 2.241 14.941 0.25 0
JJD JID29AN.NSP 23 M gastric reflux; bilateral moderate jitter, 5.528 12.253 0.411 18.75
pachydermia and edema,; shimmer, subhar
unilateral suleus vocalis monic components
VMS VMSO04AN.NSP 27 F hyperfunction; ventricular ~ moderate jitter, 6.354 15.04 0.495 26.316

compression; bilateral
laryngeal web; post-laser

shimmer, subhar
monic components

removal of subglottic web;
scarring

a/alues from the Kay Multidimensional Voice Program.
PDegree of subharmonics: estimated relative evaluation of subharmohicctimponents in the voice sample.

was performed using the same weights for each componeme¢nsity levels. The signals were recorded in a soundproof
as in the separate normalization. booth, using a condenser microphone and a DAT-recorder
With simultaneous normalization, the acoustic, EGG,set to a sampling rate of 44.1 kHz. From the DAT-tape the
and airflow HNRs for subject A become 11.8 dB, 30.3 dB,recordings were converted into an analog signal and digi-
and 11.6 dB, respectively, and INW is 0.0039. For subject Btized into a computer at a sampling rate of 25 kHz, with
the HNRs are 6.9 dB, 25.9 dB, 11.1 dB, and INW is 0.0087.12-kHz anti-aliasing filtering, and 16-bit resolution.
Comparison with Table Il shows that the HNR values are ~ We selected two signals with high amplitude irregularity
now lower than those for independent normalization, espebut relatively low frequency irregularitysubjects SLM and
cially for the acoustic wavelets. The lower values of HNRTPS and two with high values of jitter and high subhar-
result because the EGG requires a much smaller nonlineanonic content(subjects JJD and VMS Table Il provides
warping than the other two setf the EGG required the information on the speakers and the main characteristics of
same amount of warping, both in magnitude and time distritheir voice signals. The signals were inspected as before us-
bution, as the other two signals, then the results would béng a signal visualization program, and a stable segment was
similar to the separate normalizatjoiThe resultant warping identified, from which 20 consecutive wavelets were ex-
is then a compromise for the three sets. The differences itracted. The wavelet boundaries were determined by identi-
the results obtained using simultaneous and separate norm&ing an easily recognizable event in the signals. We selected
ization confirm the conclusion obtained from separate northe negative zero crossing immediately before the main
malization, i.e., that a large phase variability is introducednegative peak in subjects SLM, TPS, and VMS, and the posi-
above the larynx. tive zero crossing immediately before the main positive peak
When only the acoustic and airflow wavelets are simul-in JJD. Other techniques for wavelet extraction were also
taneously normalized, their HNRs for subject A are 15.8 dBapplied, as discussed in the next section. Nonlinear normal-
and 12.1 dB, respectively, with an INW of 0.0061. For sub-ization was applied using a weight=10"° andA=0.1.
ject B we obtain 11.4 dB, 15.7 dB, with an INW of 0.0016.
All of these HNR values are now close to those in Table II.
This fact shows that the irregularity of the acoustic and air-B- Results
flow wavelets is not only similatbecause in Table Il the The computed indices for all signals are listed in Table
HNR and INW values of the acoustic and airflow signals arqy. |n general, the FDA nonlinear normalization algorithm
similan), but it is also equally distributed in time for both sets gchieved a good alignment of all signals, in spite of their
(because separate and simultaneous normalization produggyh degree of irregularitysee results for subject SLM in
similar results. Fig. 1) We note that Dynamic Programming produces
higher values of HNR than FDA in all cases. One could
interpret this result as an indication of better alignment of the
wavelets, but a closer look at the resultant waveforms shows
a large distortionsee Fig. 12 In this figure, the distortion
can be seen at the first positive and negative peaks, and in the
Finally, we tested the algorithms with voice signals fromflat portion near the end of the wavelet. Looking at the phase
the Voice Disorders Database of the Voice and Speech Labahift functions, we see that Dynamic Programming tends to
ratory of the Massachusetts Eye and Ear Infirm@sy EI-  align the wavelet in its finer details, without constraints for
emetrics, 1994 The recording procedure used in the data-smoothness, whereas FDA tends to align its general shape
base was as follows: each subject was asked to producedwath a smooth phase shift functigthe degree of smoothness
sustaineda/ at comfortable fundamental frequency and in-of the phase shift function can be manipulated by varying

V. EXAMPLES WITH PATHOLOGICAL VOICE
SIGNALS

A. Signals
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TABLE IV. Computed HNR values for voice signals from the Voice Disorders Database of the Voice and
Speech Laboratory, Massachusetts Eye and Ear Infirfikay Elemetrics, 1994 Wavelet boundaries at zero
crossing before main positive or negative peak. ZP: zero-padded HNR; LN: linearly normalized HNR; DP:
nonlinearly normalized HNR using Dynamic Programming; FDA: nonlinearly normalized HNR using FDA;
INW: index of nonlinear warping.

Subject  Fo(Hz)®  Jitter(H2® ZP(B) LN (dB) DP(dB) FDA (dB) INW

SLM 80.4 2.3 9.1 8.6 13.5 10.6 0.0072

TPS 1125 1.3 14.8 14.0 19.7 16.5 0.0041

JJD 135.4 5.2 2.7 2.9 7.6 4.7 0.0084

VMS 294.0 8.4 2.1 2.9 7.3 4.4 0.0135
®Mean of 1T;, i=1,...,20, whereT; are the wavelet lengths.

bStandard deviation of T/ .

coefficient\ in Eq. (5)]. Thus we believe that the higher Figure 13 shows results for VMS. On the other hand, at the
HNR values of Dynamic Programming are an artifact of thelower frequency value$i.e., 68.2 Hz and 59.5 Hz for JJD
distortion and they do not reflect the actual wavelet irreguand VMS, respectively the extracted wavelets presented
larity. complex waveform patterns with several peaks and valleys,
Signals of subjects JJD and VMS presented some diffiand the nonlinear normalization algorithm failed to extract a
culty due to their content of subharmonies. The frequencyood average. This difficulty might be worst in cases of pho-
spectrum of JJDcomputed on the raw signal prior to wave- nation at two or more incommensurate frequenceeg., bi-
let extraction revealed a main peak at 136.4 Hz, with a low phonation since there is not a consistent waveform pattern
frequency component at 68.2 Hgeriod-2 phonation; Titze, repeating at regular intervals, and even identifying the wave-
1994h. VMS had a main peak at 293.7 Hz, with a lowestlet boundaries would not be trivial. For these cases, voice
frequency component at 59.5 Hgeriod-5 phonation; Titze, irregularity may be better evaluated using other techniques,
1994h. The FDA time normalization performed well when such as those developed by Heratlal. (1994 applying
the wavelets were extracted at the higher frequency values
(i.e., 136.4 Hz and 293.7 Hz for JJD and VMS, respectively
The indices reported in Table IV correspond to this case.
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0.1 0.15 0.2 0.25 0.3 FIG. 12. Comparison of nonlinear normalization results using FDA and
Normalized time Dynamic Programming for subject SLM. Top: linearly normalized wavelet
(dashed ling and normalized wavelet using FD&olid line). Middle: lin-
FIG. 11. Original signaltop), extracted unnormalized wavelegtsiddle), early normalized wavelgidashed ling and normalized wavelet using Dy-

and normalized wavelets using FD@ottonm) for subject SLM. Only a  namic Programmingsolid line). Bottom: phase shift functions produced by
portion of the wavelets is shown, for better visualization of the alignment. FDA (smooth curvgand Dynamic Programmingliscontinuous curvye
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x 10* for signals SLM and TPS, and much lower values of HNR
for JJD and VMS. In all cases also the variation for both
‘ methods of nonlinearly normalized HNR was smaller than
i i L for the zero-padded and linearly normalized HNR. These re-
| sults show that nonlinear normalization is in general less
sensitive to the wavelet extraction technique applied in that
differences in extraction method yield less HNR variation for
s . . nonlinear normalization than for zero-padding or linear nor-
o 20 - 40 60 80 malization. The choice of a wavelet extraction technique
%10 ime (ms) .\ . . . .
seems to be more critical when dealing with highly irregular
signals. However, we believe that this is an issue that needs
further consideration. For example, it might be possible to
combine a waveform matching method of wavelet extraction
(which is based on comparing shapes of adjacent cycles
with a wavelet time normalization to improve the selection
of the optimal wavelet boundaries. Also, the method used
here fixes both ends of wavelets and does not allow any
phase shift there. It might be possible to remove the con-
straints on alignment at the wavelet ends by including addi-
tional signal samples before and after the extracted cycles. In
this way, errors in detecting the exact cycle boundaries
would have less effect on the results.

Amplitude
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N
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VI. CONCLUSIONS

Normalized time

FIG. 13. Original signaltop), extracted unnormalized waveletiddle), We have presented an application of FDA to the time
and normalized waveletdottom for subject VMS(wavelet extraction at  normalization of voice signals and assessment of signal ir-
293.7 Ha. regularity, which offers certain possible advantages over pre-

vious approaches. FDA normalizes the signals while preserv-

nonlinear dynamic theorybifurcation modelsf, and am- ing meaningful features of their shapes. Although
plitude contours, phase portraits, next amplitude and nextormalization is done by removing phase differences from
period maps the signals, those differences are kept as separate measures in

The difficulty encountered with the pathological voicesthe warping functions. The underlying pattern and irregular-
led us to experiment with different techniques to extract thaty of the signals may then be extracted as separate functions,
wavelets from the signals. As an example, Table V showsnd the irregularity may be evaluated in terms of irregularity
results for negative peak-picking on SLM, TPS, and VMS;in the waveform(as measured by the HNRand in phasé¢as
and positive peak-picking for JJD. Comparing these valuesneasured by the index of nonlinear warpingVe believe
with those in Table IV, there is a mean variation of 2.65 dB,that the two indices permit a better assessment of the signal
0.48 dB, 0.35 dB, and 0.15 dB for the zero-padded HNRjrregularity than a single general index combining phase and
linearly normalized HNR, nonlinearly normalized HNR us- waveform irregularity(as the HNR with zero-padding or lin-
ing Dynamic Programming, and nonlinearly normalizedear normalization Two sets of wavelets with different
HNR using FDA. Wavelet extraction at negative zero crossshapes may have the same waveform and phase irregularity,
ings of a low-pass filtered signal, and using waveformbut produce very different values of HNR with zero-padding
matching (Titze and Liang, 1998produced similar results or linear normalizatiorias in the examples with the recorded

TABLE V. Computed HNR values for voice signals from the Voice Disorders Database of the Voice and
Speech Laboratory, Massachusetts Eye and Ear Infirfiay Elemetrics, 1994 Wavelet boundaries at main
positive or negative peak. ZP: zero-padded HNR; LN: linearly normalized HNR; DP: nonlinearly normalized
HNR using Dynamic Programming; FDA: nonlinearly normalized HNR using FDA; INW: index of nonlinear

warping.

Subject Fo(Hz)®  lJitter(Hz® ZP(B) LN (dB) DP(dB) FDA (dB) INW
SLM 81.3 2.0 5.3 9.1 13.7 10.9 0.0055
TPS 112.4 1.2 8.9 14.9 19.5 16.4 0.0033
JJD 135.3 3.4 2.0 2.8 7.4 4.7 0.0096
VMS 293.2 9.2 1.9 3.3 8.1 4.2 0.0090

aMean of 1T, i=1,...,20, where€T; are the wavelet lengths.

bStandard deviation of T/ .

1418 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000 J. C. Lucero and L. L. Koenig: Time normalization of voice signals 1418



airflow and acoustic signalsThe similarities in their irregu- erator is fitted to the wavelets and irregularity is assessed on
larity would only be revealed after separating them intoa resultant empirical forcing functiofsee details in Ramsay
waveform and phase irregularity. and Silverman, 1997

The possibility of partitioning signal variability into An additional advantage of FDA over Dynamic Pro-
phasing and waveform components also holds promise fagramming is that FDA does not require selecting one of the
research into the nature and significance of variability inwavelets as a template for the alignment. Further, it allows
speech production. In particular, we plan to extend thisfor considerable flexibility in selecting the alignment criteria,
method to study of children’s speech. Increased variability inwith roughness penalty terms, derivatives, and weighting
children’s speech relative to adults has frequently been fountlinctions, and one may process simultaneous sets of signals.
(e.g., Chermak and Schneiderman, 1986; Eguchi and Hirsigimultaneous normalization of signals may be useful for
1969; Kent and Forner, 1980; Ohde, 1985; Sharkey andnalyzing sets of signals in which one signal is considered to
Folkins, 1985; Smith, 1994, 1995; Smi#t al, 1983; Tin- result from variation in other recorded signals. This is the
gley and Allen, 1975; Watkin and Fromm, 1984ut the case, for example, with intraoral pressure signals, which vary
significance and nature of adult—child differences remairaes a function of both glottal area and supraglottal articulation
matters of debatdsee, e.g., Chermak and Schneiderman(e.g., Koeniget al, 1995; Miuler and Brown, 1980 Al-
1986; Sharkey and Folkins, 1985; Smith, 1994; Stathopouthough the warping functions represent a compromise among
los, 1995. More detailed information about how variability the various signals, it is possible to vary the influence of
is distributed within child and adult data may provide greatervarious signals so as to achieve an optimal normalization for
insight into the processes by which speech production skilthe particular application.
develops. However, several technical details of the FDA algorithm

As shown with synthetic signals, the waveform irregu-remain to be further considered, such as how best to select
larity measured by nonlinear normalization is less sensitivehe weighting functions and roughness penalty coefficient,
to jitter, and to errors introduced by sampling frequency dis-based on the characteristics of the signals. It might also be
cretization than zero-padding or linear normalization techpossible to achieve a better alignment of wavelets by using a
niques. The results from recorded signals show that the irweighted combination of the wavelets and their derivatives
regularity measure is also less sensitive to the wavelen the squared error integral in E¢p) (Wang and Gasser,
extraction technique used. 1997, but further study is needed on determining the most

We have also shown the limitations of nonlinear normal-appropriate methods for selecting alignment criteria.
ization using Dynamic Programming. The algorithm tested  In this paper we have used the HNR of the normalized
(Qi, 1992 produced significant distortion in the wavelets, assignals as one criterion for selecting among various methods.
a consequence of nonsmooth warping functions. Some tecl: noted above, however, obtaining a higher HNR does not
nigues have been proposed in the literature to reduce wavelatways necessarily mean that a method is superior. For ex-
distortion (e.g., Parsons, 1987; Strik and Boves, 198§  ample, in the examples with pathological voice signals, time
constraining excessive expansion or contraction of the timaormalization by Dynamic Programming produced higher
scale. However, the resulteavelets, warping functions, av- values of HNR, but at the expense of a large distortion of the
erages are in general nonsmootfi.e., nondifferentiable ~ wavelets. We do claim that nonlinear normalization using
Differentiability may be a desirable property, for further pro- FDA produces a good prediction of the signal SNRfined
cessing of the results. One may differentiate the warpings in Eq. (17)], typically higher than the other methods
functions(which represent phase differences between wavetested, while preserving the shape and smoothness of the
lets) to analyze instantaneous frequency irregularity. For votesultant wavelets.
cal fold oscillation, instantaneous frequency is mainly related  In our analyses, we attributed an artificial length of 1 to
to tissue stiffnessTitze, 19943, so that frequency irregular- the normalized wavelet time scale. This is a common tech-
ity (e.g., in the EGG signalsnay reveal aspects of the tissue nique in FDA, since one is usually interested in analyzing
biomechanies and voice motor control. The ability to differ- shape characteristics of wavelets. However, it is also possible
entiate a signal one or two times also has great potentidb interpret the results in absolute time, e.g., by attributing
applications in work on speech kinematics and aerodynanthe mean length of the original wavelets to the normalized
ics. Zero crossings in the first time derivative of a signal maytime length.
be used as a means of determining the timing of articulatory = The technique is based on the assumption that there is a
or aerodynamic eventge.g., Gracco and lfqvist, 1994, common pattern to all the wavelets. For regular voices, this
Koenig, in press; Kolliaet al, 1995; Ldqvist and Gracco, assumption is reasonable, and amounts simply to claiming
1997, 1999. The second time derivative has similarly beenthat the laryngeal signal represents the output of a pattern of
used to define articulatery events; for example, Kodimg vocal fold vibration that is essentially periodic, albeit with
press used the second time derivative in an oral airflow sig-some minor irregularity due to jitter and shimmer, among
nal to define release and closure for oral stop consonants, awther things. The oral signals then represent the periodic la-
Lofqvist and Graccd1997) used the second time derivative ryngeal signal combined with the vocal tract transfer func-
of a lip opening measure to define the onset of labial closingion. Highly disordered voices, on the other hand, present a
for a stop consonant. Other potentially interesting FDA techdifficulty for FDA in that the laryngeal signal may not have
nigues also require differentiability of wavelets, such as prin-a consistent pattern repeating at periodic intervals. Cases of
cipal differential analysis, in which a linear differential op- signals with subharmonics may still be handled reasonably
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