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The harmonics-to-noise ratio~HNR! has been used to quantify the waveform irregularity of voice
signals@Yumotoet al., J. Acoust. Soc. Am.71, 1544–1550~1982!#. This measure assumes that the
signal consists of two components: a harmonic component, which is the common pattern that
repeats from cycle-to-cycle, and an additive noise component, which produces the cycle-to-cycle
irregularity. It has been shown@J. Qi, J. Acoust. Soc. Am.92, 2569–2576~1992!# that a valid
computation of the HNR requires a nonlinear time normalization of the cycle wavelets to remove
phase differences between them. This paper shows the application of functional data analysis to
perform an optimal nonlinear normalization and compute the HNR of voice signals. Results
obtained for the same signals using zero-padding, linear normalization, and dynamic programming
algorithms are presented for comparison. Functional data analysis offers certain advantages over
other approaches: it preserves meaningful features of signal shape, produces differentiable results,
and allows flexibility in selecting the optimization criteria for the wavelet alignment. An extension
of the technique for the time normalization of simultaneous voice signals~such as acoustic, EGG,
and airflow signals! is also shown. The general purpose of this article is to illustrate the potential of
functional data analysis as a powerful analytical tool for studying aspects of the voice production
process. ©2000 Acoustical Society of America.@S0001-4966~00!00310-6#

PACS numbers: 43.70.Aj, 43.70.Dn, 43.70.Gr, 43.72.Lc@AL #
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I. INTRODUCTION

This paper deals with the problem of quantifying t
irregularity in the waveform of a voice signal. It has lon
been known that measures of irregularity in the time and
amplitude domain may differentiate normal from abnorm
voice qualities, with the pathological samples showing m
extreme measures of irregularity than the normal sam
~Lieberman, 1962; Titze, 1994a!. Thus accurate measures
waveform irregularity could be used as a noninvasive te
nique for voice evaluation and diagnosis.

As pointed out by Qi~1992!, computing such measure
of waveform irregularity presents the difficulty that an in
nite amount of information is involved, in contrast to, e.
measures of fundamental frequency irregularity~jitter! which
deal with a single parameter. The simplest approach is
compute the variability on the maximum amplitude of ea
period ~wavelet! of the signal. However, this measure h
limitations since it misses information at other points of t
wavelets. It is easy to see that wavelets of different sha
but the same maximum amplitude would produce a z
measure of irregularity by such an approach.

As an improved measure, the harmonics-to-noise r
~HNR; Yumoto et al., 1982! was proposed, in which the
whole wavelet is used in the computation. The HNR assum
that the signal consists of two components: a harmonic c

a!Electronic mail: lucero@mat.unb.br
b!Electronic mail: koenig@haskins.yale.edu
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ponent which is the periodic pattern that repeats through
the wavelets, and an additive noise component which p
duces wavelet irregularity. In the cited work, the harmon
component was computed as the average of the wave
and the noise component as the difference of the wavele
their average. Since the wavelets have different lengths
to jitter, they were normalized in time by zero padding~i.e.,
filling with zeroes! each wavelet to the longest period, so th
they could be compared on a point-by-point basis.

Qi ~1992! showed the limitations of the zero-paddin
normalization: since the wavelets differ in length, a lar
portion of the computed noise will be caused by the len
irregularity. Thus voices with high values of jitter will nec
essarily produce low values of the HNR, so that the HNR
such cases does not provide an accurate indication of gen
waveform irregularity. A first solution to this problem woul
be a linear expansion or compression of all wavelets t
common length. However, phase differences between wa
lets would remain, which would also contaminate the co
puted HNR. To illustrate this problem, a simple case of t
wavelets is shown in Fig. 1. In each plot, the broken line
the computed average. In the case of zero-padding norm
ization ~Fig. 1, top!, the average clearly does not resemb
either of the wavelets. It also has a point of discontinuity
the start of the zero-padding region. With linear normaliz
tion ~Fig. 1, middle!, a better continuous average is obtaine
although its shape is still different from those of the wav
lets. To obtain a better average, phase differences betw
the wavelets should be removed. A more accurate comp
14088(4)/1408/13/$17.00 © 2000 Acoustical Society of America
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tion of the wavelet average and the HNR requires a nonlin
expansion or compression of the wavelets in time, so
their shapes become aligned~Fig. 1, bottom!. Only in this
case may the average be considered as the common pa
of the wavelets. To accomplish an optimal wavelet alig
ment, Qi~1992! applied a dynamic programming algorithm
In later works~Qi et al., 1995; Qi and Hillman, 1997!, un-
constrained dynamic programming and zero phase trans
mation were used for the alignment. The zero phase tra
formation simply removes all phase-related information fro
the wavelets prior to computation of the HNR; however, t
approach produced in general poorer measures of wave
irregularity than nonlinear normalization, according to te
using synthetic signals~Qi et al., 1995!.

A similar issue has been recently discussed in the c
of speech movement signals~Lucero et al., 1997!. In that
work, three techniques for extracting the average of a se
speech wavelets were considered, namely: un-normalized
eraging ~equivalent to zero padding, Fig. 1, top!, linearly
normalized averaging~as in Fig. 1, middle!, and nonlinearly
normalized averaging~as in Fig. 1, bottom!. To achieve the
nonlinearly normalized average, a new algorithm based
functional data analysis~FDA; Ramsay, 1998; Ramsayet al.,
1996; Ramsay and Li, 1998; Ramsay and Silverman, 19!
was introduced. It was argued that this algorithm has adv
tages over previous dynamic programming because the
sults are smooth and differentiable~thus allowing for further
processing!, it does not require users to select one of t
wavelets as a reference or template for the alignment,

FIG. 1. Methods of temporal normalization applied to the extraction of
average~dashed line! of two wavelets. Top: zero padding. Middle: linea
normalization. Bottom: nonlinear normalization.
1409 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000 J. C
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different optimization criteria may be adopted according
the application.

This work will show the application of the FDA nonlin
ear normalization technique to extract averages and com
the HNR of voice signals. Results obtained for the sa
signals using zero-padding, linear normalization, and
namic programming algorithms will also be presented
comparison. Our general purpose is to illustrate the poten
of FDA as a powerful analytical tool for studying aspects
the voice production process.

II. MEASUREMENT OF VOICE SIGNAL IRREGULARITY
USING FDA

A. Nonlinear time normalization

FDA has emerged in recent years as a set of analyt
tools to explore patterns and variability in sets of data t
may be regarded as functional observations~Ramsay and Sil-
verman, 1997!. The term functional here means that, a
though the data may be observed and recorded discre
they may be described by some function of time. A sing
functional observationz consists of a finite set of pair
(t j ,zj ), wherezj is the measuredjth sample ofz at time t j .
In FDA, the existence of an underlying functiony(t) is pos-
tulated, such that

zj5y~ t j !1e j , ~1!

wheree j represents an observational error or noise term
variety of analytical tools may be applied to extract the m
characteristics of the functional data set. Such tools may
quire evaluating such a functiony(t) at any particular instan
of time, and all its derivatives that exist at such an insta
Two approaches may then be followed:~1! extractingy(t)
from the raw data by filtering out the noise~i.e., by smooth-
ing the data!, or ~2! leaving the noise in the data and requ
ing smoothness of the results of the analysis. In the pre
case, smoothing the raw data would eliminate or attenu
the same irregularity we want to assess, so the second
proach will be followed. We will align the raw voice wave
lets by requiring a smooth expansion or compression of
time scale. We describe briefly the FDA algorithm for no
linear time normalization. For more details, we refer t
reader to the cited references~Luceroet al., 1997; Ramsay,
1998; Ramsay and Li, 1998; Ramsay and Silverman, 19!.

Let us denote the set of wavelets to normalize asxi(t),
wherei 51,...,N, andN is the number of wavelets. For sim
plicity, let us assume that all the wavelets have the sa
length, from t50 to t51. For each wavelet, a strictly in
creasing and smooth transformation of timehi(t) ~warping
function! is determined, such that each normalized wave

xi* ~ t !5xi@hi~ t !# ~2!

is close in some measure to their average

x̄* ~ t !5
1

N (
i 51

N

xi* ~ t !. ~3!

Such a transformation is defined as

e

1409. Lucero and L. L. Koenig: Time normalization of voice signals
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hi~ t !5AE
0

t

e*0
uwi ~v !dv du, ~4!

wherewi(t) is the relative curvature ofhi(t) ~to be deter-
mined optimally!, v is an integration variable, and coefficie
A is selected so thathi(t)51. Given any functionwi(t) such
that the integrals in Eq.~4! exist, this equation will produce
a strictly increasing and twice differentiable functionhi(t).

Different measures may be used to evaluate the clo
ness of the normalized records to their average, accordin
the particular application. Here, the measure

F~xi ,wi ,a,l!5E
0

1

a~ t !@xi* ~ t !2 x̄* ~ t !#2 dt1lE
0

1

wi
2~ t !dt

~5!

is adopted, wherea(t) is a weighting function andl is a
positive constant. The first integral is the classic squared
ror measure used in dynamic programming algorithms~Qi,
1992; Qiet al., 1995; Qi and Hillman, 1997!. The weighting
function a(t) may be used to emphasize alignment in p
ticular regions of the wavelets@by setting a larger value o
a(t) at those regions#. The second integral incorporates
penalty for the roughness of the warping function, control
by parameterl ~the larger the value ofl, the smaller the
curvature ofhi!.

Hence, the problem consists of estimating the curvat
functionswi(t) in Eq. ~4! that will minimize the total mea-
sure~cost function!

C~x1 ,...,xN ,w1 ,...,wN ,a,l!5(
i 51

N

F~xi ,wi ,a,l!. ~6!

This minimization problem may be solved by using an e
pansion of*0

1wi(t)dt into a basis of B-spline functions, a
described by Ramsay and Silverman~1997! and Luceroet al.
~1997!.

The algorithm assumes that all the wavelets have
same length from 0 to 1. It is possible to modify it to acco
modate wavelets of different lengths and time spans. H
ever, it is computationally much simpler to interpolate
wavelets to a common length and attribute to this length
artificial @0, 1# time span before applying the nonlinear no
malization. The results should be the same in either cas

After the wavelets have been optimally aligned in tim
we extract the normalized averagex̄* (t) and the normalized
noise componentsxi* (t)2 x̄* (t), i 51,...,N. We also com-
pute the expressionDhi(t)5hi(t)2t, i 51,...,N, which rep-
resents the amount of nonlinear warping or phase shift
each wavelet@if no warping is required, thenhi(t)5t and
Dhi(t)50#. The irregularity of the set of wavelets may the
be seen in the above functions or related ones. For exam
one may compute the standard deviation of bothxi* (t) and
hi(t) across theN wavelets, to visualize how the waveform
irregularity and phase irregularity are distributed along
wavelet period@0, 1#.

B. Extension to simultaneous signals

The above algorithm may be easily extended for sim
taneous normalization of sets of signals. When various
1410 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000 J. C
e-
to

r-

-

d

re

-

e
-
-

l
n

,

r

le,

e

l-
g-

nals are recorded simultaneously~e.g., acoustic, EGG, ora
airflow, and other voice signals!, it might be desirable also to
normalize them simultaneously, to keep their synchrony
time. Also, simultaneous normalization may be applied
reveal phase relations between the signal sets.

For this case, instead of scalar-valued wavelets, one
consider vector-valued wavelets such as

xi~ t !5@Acousticsi~ t !,EGGi~ t !,Airflow i~ t !,...#T. ~7!

The warping functions are still scalar functions, which sim
taneously align all the components of the wavelets.

The cost function has now the general expression

F~xi ,wi ,A,l!5E
0

1

@xi* ~ t !2 x̄* ~ t !#TA~ t !@xi* ~ t !2 x̄* ~ t !#dt

1lE
0

1

wi
2~ t !dt, ~8!

whereA(t) is a matrix of weight functions.

C. Indices of irregularity

We consider here two indices of irregularity. The HN
~Yumoto et al., 1982!,

HNR5
N*0

1x̄* 2~ t !dt

( i 51
N *0

1@xi* ~ t !2x* ~ t !#2 dt
~9!

and an index of nonlinear warping~INW!, defined as the
mean of the root-mean-squared values of warping functi
Dhi(t):

INW5
1

N (
i 51

N

AE
0

1

Dhi~ t !dt. ~10!

III. EXAMPLES WITH SYNTHETIC SIGNALS

A. Signals

We first applied the above techniques to synthetic s
nals, in order to determine the relative accuracy of the d
ferent approaches. To allow comparison with previous wo
we synthesized signals following the equations given
Titze and Liang~1993!.

We set the instantaneous frequency of the signals to

f c~ t !5 f 0~11K f sin~2p f 0t/10!!, ~11!

where f 0 is the center frequency, andK f is a parameter for
frequency variability. For simplicity, we adopted a sinusoid
frequency modulation instead of a random modulation. T
instantaneous phase is

u~ t !5E
0

t

2p f c~ t !dt. ~12!

The signal is then synthesized as

x~ t !5y@u~ t !#1Ka Randn~ t !, ~13!

where y(u) is a periodic function,Ka is a parameter for
amplitude variability of the signal noise, and Randn(t) is a
function that generates a random value from a normal dis
1410. Lucero and L. L. Koenig: Time normalization of voice signals
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bution. We considered various functions fory(u): ~a! plain
sine wave~Fig. 2, top!

y~u!5cos~u!, ~14!

~b! EGG analog~Fig. 2, middle!, using the expression~Titze
and Liang, 1993!

y~u!5H 0.5@12cos~2u!#, 0<u,p/2

0.5@12cos~2u/312p/3!#, p/2<u<2p
,

~15!

and ~c! mouth pressure analog~Fig. 2, bottom!, using the
expression

y~u!52.18(
n50

10

Real~Cn!cos~nu!1Imag~Cn!sin~nu!,

~16!

whereCn are the coefficients in Table I. These values we
obtained by first synthesizing a mouth pressure analog si
using the technique described by Titze and Liang~1993!, and
then extracting its first 11 Fourier coefficients. Coefficie
2.18 sets its peak amplitude to 1.

B. Processing and results

All the algorithms were implemented in Matlab, and ru
on a personal computer. Trains of cycles of the three sig
were synthesized using a sampling frequency of 10 kHz
center frequencyf 05150 Hz. Wide ranges of values forKa

and K f were considered, from 0~no irregularity! to Ka

50.1 andK f50.6 ~large irregularity, as assessed visuall!.

FIG. 2. Synthetic signals used to test the algorithms. Top: sine w
Middle: EGG analog. Bottom: mouth pressure analog.
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Twenty individual cycles were then identified as the portio
with 2p(n21)<u,2pn, n51,...,20, and arranged as a s
of 20 wavelets~this number of wavelets was used to insu
statistical validity of the results yet to keep the process
task manageable!. Each set of wavelets was then normaliz
in time applying zero-padding, linear normalization~using
cubic spline interpolation; Presset al., 1992!, and nonlinear
normalization using the above FDA algorithm. For compa
son, we also applied the Dynamic Programming algorit
given by Qi ~1992!. Let us briefly recall that this algorithm
computes a warping function by minimizing the total squa
error~cost! between the aligned wavelet and a template, w
higher and lower limits imposed to the warping as co
straints. The template is chosen as the wavelet with the m
mum total cost compared to all the other wavelets. Af
aligning all wavelets, the mean total cost is the noise ene
@denominator in Eq.~8!# divided by a factor ofN.

For FDA normalization, we we set functiona(t) in Eq.
~5!, to a constant value of 1000~i.e., giving the same weigh
to alignment along all the wavelet length!. The constant
value was selected so as to have cost function values in
range 1–100, to facilitate the application of the optimizati
Matlab routine~BFGS quasi-Newton algorithm; Presset al.,
1992! available in its standard toolboxes. The roughness p
alty parameter was set atl51. This value was selected b
visual inspection of the results, so as to allow alignment
the wavelets without significant waveform distortion.

After the normalizations, we computed the HNR and,
the case of nonlinear normalization with FDA, the index
nonlinear warping~INW!. Also, we computed the signal-to
noise ratio of the train of cycles

SNR5
*0

Ty2@u~ t !#dt

*0
T$x~ t !2y@u~ t !#%2 dt

, ~17!

wherex(t) andy(t) are the signals before and after the a
dition of noise~amplitude variability!, respectively@see Eq.
~13!#, andT is the train’s length. Since the SNR measures
ratio of the energy of the signal without noise to the no
energy, it may be regarded as the ‘‘true’’ HNR value. Hen
we consider computed HNRs that are closer to the SNR to
more accurate. Let us remark here that the objective of n
linear normalization is to obtain an HNR value that is clo
to the SNR@as defined in Eq.~17!# by aligning the wavelets
while keeping their general shape.

TABLE I. Fourier coefficients for Eq.~16!.

n Cn

0 20.000 101 i0
1 0.068 831 i0.011 02
2 0.049 442 i0.078 75
3 20.031 222 i0.095 82
4 20.170 362 i0.049 38
5 0.029 291 i0.073 95
6 0.022 151 i0.020 59
7 0.034 192 i0.000 90
8 20.001 432 i0.005 95
9 20.000 562 i0.001 16

10 20.000 242 i0.000 29

e.
1411. Lucero and L. L. Koenig: Time normalization of voice signals
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Figure 3 shows an example of the mouth pressure wa
lets @Eq. ~16!# for Ka50.05 andK f50.4, after zero-padding
normalization~top!, linear normalization~middle!, and non-
linear normalization with FDA~bottom!. We can see tha
nonlinear normalization aligns the wavelets by removing
phase variability. Figure 4 shows the extracted averagex̄* (t)
after nonlinear normalization~top!, the noise components o
the normalized signalsxi(t)2 x̄* (t) ~middle!, and the phase
shift functions Dhi(t) ~bottom!. The average matches th
common pattern of the wavelets, and the noise is uniform
distributed along the wavelets. The HNR is22.76 dB with
zero padding, 6.69 dB with linear normalization, 15.0 d
with nonlinear normalization using Dynamic Programmin
and 18.54 dB with nonlinear normalization using FDA. T
SNR is 17.82 dB. Clearly, the HNR with nonlinear norma
ization using FDA produces the best approximation to
SNR of the four methods.

It is instructive to compare the resultant waveforms p
duced by the two nonlinear normalization methods. Figur
shows one of the wavelets after nonlinear normalization
both methods, and the phase shift functionsDhi(t). We can
see that the normalized wavelet with FDA maintains
same original shape with a smooth phase shift. On the o
hand, the normalized wavelet with Dynamic Programm
has noticeable distortions~e.g., compare the shapes of pea
and valleys!. These distortions are the consequence of
irregular ~nonsmooth! phase shift function.

Figure 6 shows results when the frequency variability
the signal is fixed toK f50.4, and the amplitude variability i

FIG. 3. Mouth pressure wavelets forKa50.05 andK f50.4, after zero-
padding normalization~top!, linear normalization~middle!, and nonlinear
normalization~bottom!.
1412 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000 J. C
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FIG. 4. Average component~top!, noise components~middle!, and warping
functions~bottom! of wavelets in Fig. 3, with nonlinear normalization.

FIG. 5. Comparison of nonlinear normalization results using FDA and D
namic Programming. Top: linearly normalized wavelet~dashed line! and
normalized wavelet using FDA~solid line!. Middle: linearly normalized
wavelet~dashed line! and normalized wavelet using Dynamic Programmi
~solid line!. Bottom: phase shift functions produced by FDA~smooth curve!
and Dynamic Programming~discontinuous curve!.
1412. Lucero and L. L. Koenig: Time normalization of voice signals
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be
in the rangeKa50 to 0.1. The nonlinearly normalized HNR
using FDA measures the SNR with good accuracy. The H
using Dynamic Programming produces results similar
FDA at large values ofKa , but the results worsen asKa

decreases. Both the zero-padded HNR and the linearly
malized HNR are almost constant, since they measure mo
the frequency and phase variability of the wavelets, which
also constant. The lower plot shows the index of nonlin
warping versus the amplitude variability. It is approximate
constant in the whole range, reflecting the constant freque
variability.
Figure 6 ~top! also shows that, as the amplitude variabil
tends to 0, the SNR tends to infinity. However, the HN
with both methods of nonlinear normalization reaches
maximum finite value atKa50. This is a consequence o
errors introduced by discretization at the sampling f
quency, and numerical errors produced by the algorithms
assess the degree of precision of the algorithms and tes
effect of the sampling frequency, we set bothKa andK f to
zero, and varied the sampling frequency. Figure 7 shows
computed HNR for the four methods and the index of no
linear warping. In general, as the sampling frequency
creases, the HNR increases and INW decreases~ideally, they
should be infinite and zero, respectively!. The dips and peaks
of the HNR and peaks of INW correspond to integer re
tions between the sampling frequency and central freque
of the signal. In general, the nonlinear normalization w
FDA produces more accurate values of the HNR than
other methods. The only exceptions occur at integer relat

FIG. 6. HNR~top! and INW ~bottom! versus amplitude variabilityKa , for
K f50.4. Circles: nonlinear normalization using FDA. Stars: nonlinear n
malization using Dynamic Programming. Crosses: linear normalizat
Squares: zero padding. Triangles: SNR.
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between sampling frequency and signal central frequen
where nonlinear normalization using Dynamic Programm
produces higher values.
Figure 8 shows results when the amplitude variability of t
signal is fixed toKa50.05, and the frequency variability i
in the rangeK f50 – 0.6. Both nonlinear normalization meth
ods yield an HNR that is a good approximation to the alm
constant SNR, and in general, nonlinear normalization w
FDA is more accurate than Dynamic Programming. Both
zero-padded and linearly normalized HNR decrease as
frequency and phase variability increase. We also obse
that the index of nonlinear warping increases with the f
quency variability, as required.
The results with sine waves and EGG analogs are simila
the ones shown for the mouth pressure analog. Accordin
these results, the nonlinearly normalized HNR using FD
predicts the SNR of the signals with good accuracy. Furth
results using FDA are better than results using Dynamic P
gramming, in the sense that the HNR is usually more ac
rate and the resultant normalized wavelets and phase
functions are smoother with FDA, whereas Dynamic P
gramming introduces significant shape distortions in
wavelets. The results also show that nonlinear normaliza
is less sensitive to frequency variability than linear norm
ization or zero padding, thus reducing the effect of jitter
the HNR.

-
.

FIG. 7. HNR ~top! and INW ~bottom! versus sampling frequency, forKa

5K f50. Circles: nonlinear normalization using FDA. Stars: nonlinear n
malization using Dynamic Programming. Crosses: linear normalizat
Squares: zero padding. The ideal values of the HNR and INW should
HNR5SNR5` and INW50.
1413. Lucero and L. L. Koenig: Time normalization of voice signals
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IV. EXAMPLES WITH RECORDED VOICE SIGNALS
FROM NORMAL SPEAKERS

A. Signals

We next tested the FDA normalization with record
voice signals. We collected simultaneous acoustics, EG
and oral airflow from two normal adult subjects producing
sustained /~/. One of the subjects~A! was female, age 33
and the other~B! was male, age 28. The airflow was r
corded using an undivided~oral–nasal! Rothenberg mask
and a Glottal Enterprises MSIF-2 filter. The acoustics w
recorded with a Seimheiser MKH 816T directional micr
phone placed outside the mask. The EGG was recorded
a Synchrovoice Research Electroglottograph and Glottal
terprises Linear Phase Filter and Digital Delay LPHP-2, w
settings at 3-kHz frequency limit, no delay, no coupling, a
high-pass filter at 5 Hz. All signals were low-pass filtered
4.8 kHz and digitized at 10 kHz with 12-bit precision. Usin
the same sampling rate for all signals facilitated the appl
tion of the normalization algorithms.

For each subject, the signals were inspected using a
nal visualization program, and a stable segment~one which
showed the smallest level of amplitude and pattern varia
ity through all cycles, as assessed by visual inspection! was
identified, from which 20 consecutive wavelets were e
tracted from all the three signals. That is, we extracte
simultaneous sets~acoustics, EGG, and airflow! of 20 wave-
lets each. The wavelet boundaries were determined on
EGG using the method of zero crossings with low-pass
tering ~Titze and Liang, 1993!. Nonlinear normalization was
next applied using weightsa50.001, 0.01, and 0.01, for th

FIG. 8. HNR ~top! and INW ~bottom! versus frequency variabilityK f , for
Ka50.05. Circles: nonlinear normalization using FDA. Stars: nonlinear n
malization using Dynamic Programming. Crosses: linear normalizat
Squares: zero padding. Triangles: SNR.
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acoustic, EGG, and airflow wavelets, respectively, a
l50.1. These values were selected following the same c
ria as in the case of the synthetic signals. The lower value
a for the acoustic wavelets is a consequence of their lar
amplitude values. Selecting a proper value ofa might be
facilitated by normalizing all wavelets in amplitude prior
the nonlinear normalization, e.g., by dividing the wave
amplitudes by their peak amplitudes~Wang and Gasser
1997!.

Figure 9 shows the three sets of wavelets for subjec
The three sets have some phase variability, apparently la
in the acoustic and airflow wavelets. We can also note a la
dc component in the EGG wavelets, probably produced
vertical movements of the larynx during the recording.

Prior to the FDA normalization, the wavelets we
aligned vertically by removing their mean. An alternative f
performing a vertical alignment may be to use the first
second derivative of the wavelets~Ramsay and Silverman
1997!. After the derivatives have been normalized in tim
then the computed warping functions may be used to norm
ize the original wavelets. We adopted the first alternative
being computationally simpler, and because the alignmen
done directly on the signals whose irregularity is analyz
The effects of different methods of alignment is a topic th
requires further study.

B. Results

Figure 10 shows all normalized wavelets for subject
The computed indices for all wavelets are listed in Table
In all cases~except the airflow HNR for subject A!, the HNR

-
.
FIG. 9. Recorded acoustic~top!, EGG~middle!, and airflow~bottom! wave-
lets for normal speaker A.
1414. Lucero and L. L. Koenig: Time normalization of voice signals
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values are the highest for nonlinear normalization us
FDA, since all phase and frequency variability have be
removed by the normalization. We note that the acous
and oral airflow have similar values of the HNR after no
linear normalization with FDA, even when the values
HNR using zero padding are a bit different, as in the case
subject B. They also require similar amounts of time wa
ing. A possible interpretation for these results might be th
since the airflow and acoustics are signals produced at
same level~oral output!, then one might expect similar indi
ces of amplitude and phase irregularity in both of them. T
difference between the acoustic and airflow indices prior
nonlinear normalization would then be an artifact produc
by phase shifts between wavelets.

We note also that, in both subjects, the EGG sign
have the highest HNR, and require the least warping.

FIG. 10. Normalized acoustic~top!, EGG ~middle!, and airflow ~bottom!
wavelets for subject A.
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lower values of INW on the EGG suggest that a large ph
variability is introduced into the voice above the level of t
larynx. This phase variability is produced as a conseque
of the vocal tract filtering of the voice source, since differe
harmonies of the glottal signal are filtered at different ga
and timeshift, according to their frequency.

The HNR values with Dynamic Programming are
general a bit lower than values with FDA, except in the ca
of the airflow for subject A. In the case of EGG for subje
A, the HNR results using Dynamic Programming are low
than the value computed with linear normalization. The
sultant waveforms show a similar degree of distortion to
example with synthetic signals shown in Fig. 5, which a
leads us to question the validity of the HNR measures for
Dynamic Programming normalization. Recall that the obje
tive of nonlinear normalization with FDA is to obtain a
HNR value that is close to the SNR@as defined in Eq.~17!#
by aligning the wavelets while keeping their general sha
FDA preserves the wavelets’ shapes by introducing a rou
ness penalty constraint in the algorithm@second integral in
Eq. ~5!#. Dynamic Programming, on the other hand, min
mizes the square error measure@first integral in Eq.~5!# only.
Since this measure appears in the denominator of the HN
definition @Eq. ~9!#, we may then state that Dynamic Pro
gramming uses the maximization of the HNR as the criter
for alignment~see also Qi, 1992!. However, a higher value
of the HNR does not necessarily mean that the value is m
accurate. Higher values of the HNR may also be produced
FDA nonlinear normalization, if lower values of the roug
ness penalty coefficientl are adopted, at the cost of distor
ing the wavelets’ shapes.

C. Simultaneous normalization

In the previous results, each set of wavelets~acoustics,
EGG, and airflow! was normalized separately. As a resu
the normalized wavelets are no longer synchronized in n
malized time. To keep their synchrony in normalized tim
one must perform a simultaneous normalization.

For this, we used vector-valued wavelets, as explai
in Sec. II B. Each wavelet was considered three-dimensio
where the three dimensions correspond to the acoustic, E
and airflow components. The simultaneous normalizat
; LN:
arly
TABLE II. Computed HNR values for recorded voice signals in normal speakers. ZP: zero-padded HNR
linearly normalized HNR; DP: nonlinearly normalized HNR using Dynamic Programming; FDA: nonline
normalized HNR using FDA; INW: index of nonlinear warping.

Signal ZP~dB! LN ~dB! DP ~dB! FDA ~dB! INW

Subject A, female, age 33,F05148.5 Hz,a Jitter51.1 Hzb

Acoustics 6.7 7.5 10.8 15.9 0.0063
EGG 21.3 27.2 26.8 30.9 0.0030
Airflow 10.6 10.8 13.4 12.4 0.0062

Subject B, male, age 28,F05109.8 Hz,a Jitter50.9 Hzb

Acoustics 21.7 20.6 9.2 13.7 0.015
EGG 19.6 24.3 27.1 28.6 0.0054
Airflow 8.6 9.1 15.7 15.9 0.017

aMean of 1/Ti , i 51,...,20, whereTi are the wavelet lengths.
bStandard deviation of 1/Ti .
1415. Lucero and L. L. Koenig: Time normalization of voice signals



TABLE III. Characteristics of signals from Kay Elemetrics Voice Disorders Database~Kay Elemetrics, 1994!.

Speaker Filename Age Sex Diagnosis Characteristics Jittera Shimmera NHRa DSHa,b

SLM SLM27AN.NSP 20 M hyperfunction; anterior–
posterior squeezing and
ventricular squeezing: head
trauma; unilateral paralysis;
7 days post-intubation

moderate shimmer 2.525 14.26 0.233 0

TPS TPS1GAN.NSP 39 M unilateral paralysis moderate shimmer 2.241 14.941 0.25 0
JJD JJD29AN.NSP 23 M gastric reflux; bilateral

pachydermia and edema;
unilateral suleus vocalis

moderate jitter,
shimmer, subhar
monic components

5.528 12.253 0.411 18.75

VMS VMS04AN.NSP 27 F hyperfunction; ventricular
compression; bilateral
laryngeal web; post-laser
removal of subglottic web;
scarring

moderate jitter,
shimmer, subhar
monic components

6.354 15.04 0.495 26.316

aValues from the Kay Multidimensional Voice Program.
bDegree of subharmonics: estimated relative evaluation of subharmonic tof 0 components in the voice sample.
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was performed using the same weights for each compo
as in the separate normalization.

With simultaneous normalization, the acoustic, EG
and airflow HNRs for subject A become 11.8 dB, 30.3 d
and 11.6 dB, respectively, and INW is 0.0039. For subjec
the HNRs are 6.9 dB, 25.9 dB, 11.1 dB, and INW is 0.00
Comparison with Table II shows that the HNR values a
now lower than those for independent normalization, es
cially for the acoustic wavelets. The lower values of HN
result because the EGG requires a much smaller nonli
warping than the other two sets~if the EGG required the
same amount of warping, both in magnitude and time dis
bution, as the other two signals, then the results would
similar to the separate normalization!. The resultant warping
is then a compromise for the three sets. The difference
the results obtained using simultaneous and separate no
ization confirm the conclusion obtained from separate n
malization, i.e., that a large phase variability is introduc
above the larynx.

When only the acoustic and airflow wavelets are sim
taneously normalized, their HNRs for subject A are 15.8
and 12.1 dB, respectively, with an INW of 0.0061. For su
ject B we obtain 11.4 dB, 15.7 dB, with an INW of 0.001
All of these HNR values are now close to those in Table
This fact shows that the irregularity of the acoustic and a
flow wavelets is not only similar~because in Table II the
HNR and INW values of the acoustic and airflow signals
similar!, but it is also equally distributed in time for both se
~because separate and simultaneous normalization pro
similar results!.

V. EXAMPLES WITH PATHOLOGICAL VOICE
SIGNALS

A. Signals

Finally, we tested the algorithms with voice signals fro
the Voice Disorders Database of the Voice and Speech La
ratory of the Massachusetts Eye and Ear Infirmary~Kay El-
emetrics, 1994!. The recording procedure used in the da
base was as follows: each subject was asked to produc
sustained /~/ at comfortable fundamental frequency and
1416 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000 J. C
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tensity levels. The signals were recorded in a soundpr
booth, using a condenser microphone and a DAT-recor
set to a sampling rate of 44.1 kHz. From the DAT-tape
recordings were converted into an analog signal and d
tized into a computer at a sampling rate of 25 kHz, w
12-kHz anti-aliasing filtering, and 16-bit resolution.

We selected two signals with high amplitude irregular
but relatively low frequency irregularity~subjects SLM and
TPS! and two with high values of jitter and high subha
monic content~subjects JJD and VMS!. Table III provides
information on the speakers and the main characteristic
their voice signals. The signals were inspected as before
ing a signal visualization program, and a stable segment
identified, from which 20 consecutive wavelets were e
tracted. The wavelet boundaries were determined by ide
fying an easily recognizable event in the signals. We selec
the negative zero crossing immediately before the m
negative peak in subjects SLM, TPS, and VMS, and the p
tive zero crossing immediately before the main positive pe
in JJD. Other techniques for wavelet extraction were a
applied, as discussed in the next section. Nonlinear norm
ization was applied using a weighta51025 andl50.1.

B. Results

The computed indices for all signals are listed in Tab
IV. In general, the FDA nonlinear normalization algorith
achieved a good alignment of all signals, in spite of th
high degree of irregularity~see results for subject SLM in
Fig. 11! We note that Dynamic Programming produc
higher values of HNR than FDA in all cases. One cou
interpret this result as an indication of better alignment of
wavelets, but a closer look at the resultant waveforms sh
a large distortion~see Fig. 12!. In this figure, the distortion
can be seen at the first positive and negative peaks, and i
flat portion near the end of the wavelet. Looking at the ph
shift functions, we see that Dynamic Programming tends
align the wavelet in its finer details, without constraints f
smoothness, whereas FDA tends to align its general sh
with a smooth phase shift function@the degree of smoothnes
of the phase shift function can be manipulated by vary
1416. Lucero and L. L. Koenig: Time normalization of voice signals



and

; DP:
DA;

1417 J. Acoust. S
TABLE IV. Computed HNR values for voice signals from the Voice Disorders Database of the Voice
Speech Laboratory, Massachusetts Eye and Ear Infirmary~Kay Elemetrics, 1994!. Wavelet boundaries at zero
crossing before main positive or negative peak. ZP: zero-padded HNR; LN: linearly normalized HNR
nonlinearly normalized HNR using Dynamic Programming; FDA: nonlinearly normalized HNR using F
INW: index of nonlinear warping.

Subject F0 (Hz)a Jitter ~Hz!b ZP ~dB! LN ~dB! DP ~dB! FDA ~dB! INW

SLM 80.4 2.3 9.1 8.6 13.5 10.6 0.0072
TPS 112.5 1.3 14.8 14.0 19.7 16.5 0.0041
JJD 135.4 5.2 2.7 2.9 7.6 4.7 0.0084
VMS 294.0 8.4 2.1 2.9 7.3 4.4 0.0135

aMean of 1/Ti , i 51,...,20, whereTi are the wavelet lengths.
bStandard deviation of 1/Ti .
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coefficient l in Eq. ~5!#. Thus we believe that the highe
HNR values of Dynamic Programming are an artifact of t
distortion and they do not reflect the actual wavelet irre
larity.

Signals of subjects JJD and VMS presented some d
culty due to their content of subharmonies. The freque
spectrum of JJD~computed on the raw signal prior to wav
let extraction! revealed a main peak at 136.4 Hz, with a lo
frequency component at 68.2 Hz~period-2 phonation; Titze
1994b!. VMS had a main peak at 293.7 Hz, with a lowe
frequency component at 59.5 Hz~period-5 phonation; Titze
1994b!. The FDA time normalization performed well whe
the wavelets were extracted at the higher frequency va
~i.e., 136.4 Hz and 293.7 Hz for JJD and VMS, respective!.
The indices reported in Table IV correspond to this ca

FIG. 11. Original signal~top!, extracted unnormalized wavelets~middle!,
and normalized wavelets using FDA~bottom! for subject SLM. Only a
portion of the wavelets is shown, for better visualization of the alignme
oc. Am., Vol. 108, No. 4, October 2000 J. C
-

-
y
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es

.

Figure 13 shows results for VMS. On the other hand, at
lower frequency values~i.e., 68.2 Hz and 59.5 Hz for JJD
and VMS, respectively!, the extracted wavelets presente
complex waveform patterns with several peaks and valle
and the nonlinear normalization algorithm failed to extrac
good average. This difficulty might be worst in cases of ph
nation at two or more incommensurate frequencies~e.g., bi-
phonation! since there is not a consistent waveform patte
repeating at regular intervals, and even identifying the wa
let boundaries would not be trivial. For these cases, vo
irregularity may be better evaluated using other techniqu
such as those developed by Herzelet al. ~1994! applying

.

FIG. 12. Comparison of nonlinear normalization results using FDA a
Dynamic Programming for subject SLM. Top: linearly normalized wave
~dashed line! and normalized wavelet using FDA~solid line!. Middle: lin-
early normalized wavelet~dashed line! and normalized wavelet using Dy
namic Programming~solid line!. Bottom: phase shift functions produced b
FDA ~smooth curve! and Dynamic Programming~discontinuous curve!.
1417. Lucero and L. L. Koenig: Time normalization of voice signals
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nonlinear dynamic theory~bifurcation models,F0 and am-
plitude contours, phase portraits, next amplitude and n
period maps!.

The difficulty encountered with the pathological voic
led us to experiment with different techniques to extract
wavelets from the signals. As an example, Table V sho
results for negative peak-picking on SLM, TPS, and VM
and positive peak-picking for JJD. Comparing these val
with those in Table IV, there is a mean variation of 2.65 d
0.48 dB, 0.35 dB, and 0.15 dB for the zero-padded HN
linearly normalized HNR, nonlinearly normalized HNR u
ing Dynamic Programming, and nonlinearly normaliz
HNR using FDA. Wavelet extraction at negative zero cro
ings of a low-pass filtered signal, and using wavefo
matching~Titze and Liang, 1993! produced similar results

FIG. 13. Original signal~top!, extracted unnormalized wavelets~middle!,
and normalized wavelets~bottom! for subject VMS~wavelet extraction at
293.7 Hz!.
1418 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000 J. C
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for signals SLM and TPS, and much lower values of HN
for JJD and VMS. In all cases also the variation for bo
methods of nonlinearly normalized HNR was smaller th
for the zero-padded and linearly normalized HNR. These
sults show that nonlinear normalization is in general le
sensitive to the wavelet extraction technique applied in t
differences in extraction method yield less HNR variation
nonlinear normalization than for zero-padding or linear n
malization. The choice of a wavelet extraction techniq
seems to be more critical when dealing with highly irregu
signals. However, we believe that this is an issue that ne
further consideration. For example, it might be possible
combine a waveform matching method of wavelet extract
~which is based on comparing shapes of adjacent cyc!
with a wavelet time normalization to improve the selecti
of the optimal wavelet boundaries. Also, the method us
here fixes both ends of wavelets and does not allow
phase shift there. It might be possible to remove the c
straints on alignment at the wavelet ends by including ad
tional signal samples before and after the extracted cycle
this way, errors in detecting the exact cycle boundar
would have less effect on the results.

VI. CONCLUSIONS

We have presented an application of FDA to the tim
normalization of voice signals and assessment of signa
regularity, which offers certain possible advantages over p
vious approaches. FDA normalizes the signals while pres
ing meaningful features of their shapes. Althou
normalization is done by removing phase differences fr
the signals, those differences are kept as separate measu
the warping functions. The underlying pattern and irregul
ity of the signals may then be extracted as separate functi
and the irregularity may be evaluated in terms of irregular
in the waveform~as measured by the HNR!, and in phase~as
measured by the index of nonlinear warping!. We believe
that the two indices permit a better assessment of the si
irregularity than a single general index combining phase
waveform irregularity~as the HNR with zero-padding or lin
ear normalization!. Two sets of wavelets with differen
shapes may have the same waveform and phase irregula
but produce very different values of HNR with zero-paddi
or linear normalization~as in the examples with the recorde
and

lized
ear
TABLE V. Computed HNR values for voice signals from the Voice Disorders Database of the Voice
Speech Laboratory, Massachusetts Eye and Ear Infirmary~Kay Elemetrics, 1994!. Wavelet boundaries at main
positive or negative peak. ZP: zero-padded HNR; LN: linearly normalized HNR; DP: nonlinearly norma
HNR using Dynamic Programming; FDA: nonlinearly normalized HNR using FDA; INW: index of nonlin
warping.

Subject F0 (Hz)a Jitter ~Hz!b ZP ~dB! LN ~dB! DP ~dB! FDA ~dB! INW

SLM 81.3 2.0 5.3 9.1 13.7 10.9 0.0055
TPS 112.4 1.2 8.9 14.9 19.5 16.4 0.0033
JJD 135.3 3.4 2.0 2.8 7.4 4.7 0.0096
VMS 293.2 9.2 1.9 3.3 8.1 4.2 0.0090

aMean of 1/Ti , i 51,...,20, whereTi are the wavelet lengths.
bStandard deviation of 1/Ti .
1418. Lucero and L. L. Koenig: Time normalization of voice signals
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airflow and acoustic signals!. The similarities in their irregu-
larity would only be revealed after separating them in
waveform and phase irregularity.

The possibility of partitioning signal variability into
phasing and waveform components also holds promise
research into the nature and significance of variability
speech production. In particular, we plan to extend t
method to study of children’s speech. Increased variability
children’s speech relative to adults has frequently been fo
~e.g., Chermak and Schneiderman, 1986; Eguchi and H
1969; Kent and Forner, 1980; Ohde, 1985; Sharkey
Folkins, 1985; Smith, 1994, 1995; Smithet al., 1983; Tin-
gley and Allen, 1975; Watkin and Fromm, 1984!, but the
significance and nature of adult–child differences rem
matters of debate~see, e.g., Chermak and Schneiderm
1986; Sharkey and Folkins, 1985; Smith, 1994; Stathop
los, 1995!. More detailed information about how variabilit
is distributed within child and adult data may provide grea
insight into the processes by which speech production s
develops.

As shown with synthetic signals, the waveform irreg
larity measured by nonlinear normalization is less sensi
to jitter, and to errors introduced by sampling frequency d
cretization than zero-padding or linear normalization te
niques. The results from recorded signals show that the
regularity measure is also less sensitive to the wav
extraction technique used.

We have also shown the limitations of nonlinear norm
ization using Dynamic Programming. The algorithm tes
~Qi, 1992! produced significant distortion in the wavelets,
a consequence of nonsmooth warping functions. Some t
niques have been proposed in the literature to reduce wa
distortion ~e.g., Parsons, 1987; Strik and Boves, 1991! by
constraining excessive expansion or contraction of the t
scale. However, the results~wavelets, warping functions, av
erages! are in general nonsmooth~i.e., nondifferentiable!.
Differentiability may be a desirable property, for further pr
cessing of the results. One may differentiate the warp
functions~which represent phase differences between wa
lets! to analyze instantaneous frequency irregularity. For
cal fold oscillation, instantaneous frequency is mainly rela
to tissue stiffness~Titze, 1994a!, so that frequency irregular
ity ~e.g., in the EGG signals! may reveal aspects of the tissu
biomechanies and voice motor control. The ability to diffe
entiate a signal one or two times also has great poten
applications in work on speech kinematics and aerodyn
ics. Zero crossings in the first time derivative of a signal m
be used as a means of determining the timing of articula
or aerodynamic events~e.g., Gracco and Lo¨fqvist, 1994;
Koenig, in press; Kolliaet al., 1995; Löfqvist and Gracco,
1997, 1999!. The second time derivative has similarly be
used to define articulatery events; for example, Koenig~in
press! used the second time derivative in an oral airflow s
nal to define release and closure for oral stop consonants
Löfqvist and Gracco~1997! used the second time derivativ
of a lip opening measure to define the onset of labial clos
for a stop consonant. Other potentially interesting FDA te
niques also require differentiability of wavelets, such as pr
cipal differential analysis, in which a linear differential op
1419 J. Acoust. Soc. Am., Vol. 108, No. 4, October 2000 J. C
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erator is fitted to the wavelets and irregularity is assessed
a resultant empirical forcing function~see details in Ramsa
and Silverman, 1997!.

An additional advantage of FDA over Dynamic Pr
gramming is that FDA does not require selecting one of
wavelets as a template for the alignment. Further, it allo
for considerable flexibility in selecting the alignment criteri
with roughness penalty terms, derivatives, and weight
functions, and one may process simultaneous sets of sig
Simultaneous normalization of signals may be useful
analyzing sets of signals in which one signal is considere
result from variation in other recorded signals. This is t
case, for example, with intraoral pressure signals, which v
as a function of both glottal area and supraglottal articulat
~e.g., Koeniget al., 1995; Müller and Brown, 1980!. Al-
though the warping functions represent a compromise am
the various signals, it is possible to vary the influence
various signals so as to achieve an optimal normalization
the particular application.

However, several technical details of the FDA algorith
remain to be further considered, such as how best to se
the weighting functions and roughness penalty coefficie
based on the characteristics of the signals. It might also
possible to achieve a better alignment of wavelets by usin
weighted combination of the wavelets and their derivativ
in the squared error integral in Eq.~5! ~Wang and Gasser
1997!, but further study is needed on determining the m
appropriate methods for selecting alignment criteria.

In this paper we have used the HNR of the normaliz
signals as one criterion for selecting among various metho
A noted above, however, obtaining a higher HNR does
always necessarily mean that a method is superior. For
ample, in the examples with pathological voice signals, ti
normalization by Dynamic Programming produced high
values of HNR, but at the expense of a large distortion of
wavelets. We do claim that nonlinear normalization usi
FDA produces a good prediction of the signal SNR@defined
as in Eq. ~17!#, typically higher than the other method
tested, while preserving the shape and smoothness of
resultant wavelets.

In our analyses, we attributed an artificial length of 1
the normalized wavelet time scale. This is a common te
nique in FDA, since one is usually interested in analyzi
shape characteristics of wavelets. However, it is also poss
to interpret the results in absolute time, e.g., by attribut
the mean length of the original wavelets to the normaliz
time length.

The technique is based on the assumption that there
common pattern to all the wavelets. For regular voices,
assumption is reasonable, and amounts simply to claim
that the laryngeal signal represents the output of a patter
vocal fold vibration that is essentially periodic, albeit wi
some minor irregularity due to jitter and shimmer, amo
other things. The oral signals then represent the periodic
ryngeal signal combined with the vocal tract transfer fun
tion. Highly disordered voices, on the other hand, presen
difficulty for FDA in that the laryngeal signal may not hav
a consistent pattern repeating at periodic intervals. Case
signals with subharmonics may still be handled reasona
1419. Lucero and L. L. Koenig: Time normalization of voice signals
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well by extracting the wavelets at the frequency with t
highest energy, but the technique becomes less approp
as it becomes more difficult to define a single base freque
for the signal.
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Koenig, L., Löfqvist, A., Gracco, V., and McGowan, R.~1995!. ‘‘Articula-
tory activity and aerodynamic variation during voiceless consonant
duction,’’ J. Acoust. Soc. Am.97, S3401.

Kollia, H. B., Gracco, V. L., and Harris, K. S.~1995!. ‘‘Articulatory orga-
nization of mandibular, labial, and velar movements during speech,
Acoust. Soc. Am.98, 1313–1324.

Lieberman, P.~1962!. ‘‘Some acoustic measures of the fundamental peri
icity of normal and pathological larynges,’’ J. Acoust. Soc. Am.35, 344–
353.
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