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and the oscillation frequency of the vocal folds (L)
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This Letter presents an extension of a previous equation for the phonation threshold pressure by
Titze [I. R. Titze, J. Acoust. Soc. Am. 83, 1536-1552 (1988)]. The extended equation contains the
vocal-fold oscillation frequency as an explicit factor. It is derived from the mucosal wave model of
the vocal folds by considering the general case of an arbitrary time delay for the mucosal wave to
travel the glottal height. The results are illustrated with a numerical example, which shows good
qualitative agreement with experimental measures. © 2007 Acoustical Society of America.
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I. INTRODUCTION

Almost two decades ago, Titze (1988) set forth the dy-
namical principles of the vocal-fold oscillation. He proposed
a mucosal wave model in which motion of the vocal-fold
tissues is represented as a surface wave propagating in the
direction of the airflow. His model demonstrated the
aeroelastic nature of the oscillation, born from the interaction
between the airflow blowing through the glottis and the elas-
tic structure of the tissues. Since then, the original model and
its several variations have been used in further studies of
phonation dynamics (e.g., Chan and Titze, 2006; Drioli,
2005; Laje et al., 2001; Lucero, 1999), and have even been
applied to the production of sound in the avian syrinx (Laje
and Mindlin, 2005).

An important result of Titze’s work was an equation for
the phonation threshold value of lung pressure, defined as the
minimum value required to initiate the vocal-fold oscillation.
At this threshold value, the energy transferred from the air-
flow to the vocal folds is large enough to overcome the en-
ergy dissipated in the tissues, so that an oscillatory move-
ment of growing amplitude may take place. Titze’s equation
related the threshold pressure to biomechanical parameters,
namely, glottal geometry, tissue damping coefficient, and
mucosal wave velocity. It has found important applications
in studies of glottal acrodynamics (Titze, 1992), and its va-
lidity has been tested in various experimental setups (e.g.,
Chan et al., 1997; Chan and Titze, 2006; Titze et al., 1995).
The threshold pressure value has also been interpreted as a
measure of ease of phonation, and proposed as a diagnostic
tool for vocal health (Titze et al., 1995). Its clinical signifi-
cance has been explored in several studies (e.g., Fisher and
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Swank, 1997; Fisher et al., 2001; Milbrath and Solomon,
2003; Roy et al., 2003; Sivasankar and Fisher, 2002; Verdo-
lini et al., 2002).

Naturally, the mucosal wave model included several
simplifying assumptions, necessary to permit the analytical
treatment. One of those assumptions was a small time delay
for the mucosal wave to travel along the vertical dimension
of the vocal folds. This is equivalent to a small phase delay
of the oscillatory motion of the upper edge of the vocal folds
in relation to the lower edge.1 As will be shown later, a
consequence of that assumption is that the equation for the
phonation threshold pressure lacks the oscillation frequency
as a parameter. It is well-known that phonation threshold
pressure increases with frequency, as demonstrated by ex-
perimental measures (e.g., Titze, 1992). This result is consis-
tent with data suggesting that phonation onset is delayed
when speakers use higher frequencies (e.g., Koenig et al.,
2005). The data on how frequency affects phonation are
somewhat conflicting, however (cf. McCrea and Morris,
2005). Titze (1988, 1992) pointed out the lack of a frequency
factor and offered a possible solution by relating other pa-
rameters in the phonation threshold pressure expression,
such as vocal-fold thickness and mucosal wave velocity, to
the oscillation frequency.

This Letter will show that a more general analysis of the
model allowing for arbitrary time delay results in an ex-
tended equation for the phonation threshold pressure which
includes the oscillation frequency explicitly.

Il. MUCOSAL WAVE MODEL

For details on the derivation of the model’s equations,
we refer the reader to Titze’s (1988) original work. Figure 1
shows a schematic of the mucosal wave model. Complete
right-left symmetry of the folds is assumed, and motion of
tissues is allowed only in the horizontal direction. A surface
wave propagates through the superficial tissues, in the direc-
tion of the airflow (upward).
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FIG. 1. Vocal-fold model (after Titze, 1988).

The equation of motion of the vocal-fold tissues is ob-
tained by lumping their biomechanical properties at the mid-
point of the glottis, and assuming that they are forced by the
mean glottal pressure P,, which yields

Mé+BéE+KE=P,, 1)

where £ is the tissue displacement at the midpoint, and M, B,
K are the mass, damping, and stiffness, respectively, per unit
area of the medial surface of the vocal folds.

The glottal aerodynamics is modeled by assuming that
the flow is frictionless, stationary, and incompressible. Under
such conditions, the mean glottal air pressure P, may be
expressed by

Pg=Pi+(Px_Pi)(1_aZ/al_ke)/kt, (2)

where P, is the subglottal pressure, P; is the supraglottal
pressure (at the entry of the vocal tract), k, is a pressure
recovery coefficient for the turbulent region at the glottal exit
(0<k,=<0.2, depending on the relation of the vocal-tract
input area to the glottal area), k, is a transglottal pressure
coefficient (k,=k.—k,, where k, is a pressure loss coeffi-
cient for the region upstream the glottal exit, with values
1.0<k,<1.4 depending on the glottal channel shape), and
a,, a, are the glottal areas at the lower and upper edges of
the glottal channel, respectively. The time-varying glottal
areas are given by

ay(t) =2L(&, + &(t+ 7)), (3)

a)(t) =2L(&p + £(t - 7)), (4)

where &) and &j, are the lower and upper prephonatory
glottal half-widths, respectively, 7is the time delay for the
mucosal wave to travel half the glottal height (7/2 in Fig.
1), and L is the vocal-fold length. The delay 7 depends on
the velocity of the mucosal wave, which is related to the
compliance of superficial tissues (Titze, 1992).

Following Titze, we assume that the subglottal pressure
P, is equal to a constant lung pressure P;, the vocal-tract
pressure is atmospheric (P;=0), and the vocal-tract input
area is much larger than the glottal area so that k,~ 0. Fur-
ther, and for simplicity of the present analysis, we consider
only the case in which the prephonatory glottal channel is
rectangular, i.e., the glottal half-width has a constant value
&o=E&y1=&np along the glottal height. Under such conditions,
the mean glottal pressure simplifies to
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pg=ﬁ(1-@). (5)

Substituting into Eq. (1), we obtain the final equation for the
vocal-fold oscillation

g)gm - i)

Mf*Bf*Kg:(k; Eor £+ 7)

(6)

lll. STABILITY ANALYSIS
A. Small 7 approximation

Equation (6) is a functional differential equation with
advance and delay arguments (r+7 and 7— 7, respectively).
First, let us assume that the time delay 7 is small enough so
that the advanced-delay terms may be approximated by the
linearization

&+ 1) = &) £ 7é(0), (7

which reduces Eq. (6) to an ordinary differential equation
s
o+ &+ £

The above equation may now be analyzed by standard
qualitative methods for dynamical systems. It has a unique
fixed point at é&=0 (the prephonatory position). This position
is stable for low values of P;, and becomes unstable when
P; reaches the threshold value

_ ki&B
th 27

ME+Bé+ Ké= (ﬁ> (8)

k;

)

At this threshold value, the vocal-fold oscillation is gener-
ated. The oscillation threshold constitutes a Hopf bifurcation
of the subcritical type, where the prephonatory position be-
comes unstable and at the same time absorbs an unstable
limit cycle (Lucero, 1999).

B. General case for arbitrary =

Let us consider now the general case, given by Eq. (6).
The stability of the prephonatory position at £=0 is deter-
mined by the roots of the characteristic equation associated
with the linearization (variational equation) around that po-
sition (see, e.g., Hale, 1977). The linearization may be ob-
tained by replacing the right side of Eq. (6) by the linear
terms of a Taylor expansion around £=0, which produces

P
kfg()

The characteristic equation may be obtained by the standard
technique of proposing a solution &(f)=Ce», where C and \
are constants, and seeking nonzero solutions, which yields

M$+Bg+1(§=< )[g(t+7')—§(t—7')]. (10)

2P
MN?+ B\ + K — —= sinh(A7) = 0. (11)
k&

For P;=0, Eq. (11) has the roots
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B B\ K
N=——x [l ] -, (12)
2M 2M M

which have negative real parts. For P;>0, Eq. (11) may
have an indefinite number of roots. Let us assume a pair of
imaginary roots A=iw. Substituting into Eq. (11), using the
identity sinh(ix)=i sin(x), and separating real and imagi-
nary parts, we obtain

—0*M+K=0, (13)
2P

wB — =% sin(w7) = 0. (14)
k&

The first equation produces the oscillation angular frequency
w=\K/M. The value of P; given by the second equation
is the oscillation threshold pressure

ki&Bw

=2 sin(w7)’ (13)

th
with 0 <(w7) <.

According to Rouché’s theorem (Dieudonné, 1960), the
roots of the characteristic equation depend continuously on
the parameter P;. Hence, for 0<P; <Py, all roots have
negative real parts, and at P; =Py, a pair of roots becomes
imaginary. We verify next that those roots cross the imagi-
nary axis from left to right. Implicit differentiation of Eq.
(11) produces

2TPL

COSh()\T):| A = 2 sinh(A7). (16)

[ZM)\ +B -
dPL szo

150
Substituting A=iw, P, =Py, given by Eq. (15), and separat-
ing the real part, we obtain finally
dRe(N\) B 4wM sin(w7)
dP; P,=P, T kB - wrcot(wn) ] + 4e* M%)

>0, (17)

for 0 <(w7) <. This is the transversatility condition, which
proves that the roots cross the imaginary axis and therefore
their real parts become positive.

The above results imply that the equilibrium position at
&=0 is stable for P; < Py, and unstable for P; > Py,. Further,
by the Hopf bifurcation theorem for functional differential
equations (Hale, 1977), a limit cycle is generated at P,
=Py

IV. PHONATION THRESHOLD PRESSURE

The phonation threshold pressure is then given by Eq.
(15). Note that it now contains the oscillation frequency  as
an explicit factor. Rewriting it in the form

ké&B ot
th=

- , 0<(ow7n) <, (18)
27 sin(w7)
and considering that sin(x)/x is a monotonically decreasing
function in (0, 7r), then we have that P, increases with the
oscillation frequency w, if all other factors are fixed. Note
also that, for 7—0, sin(w7) — w7, it simplifies to Titze’s
result [Eq. (9)].
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FIG. 2. Phonation threshold pressure vs oscillation frequency. (a) Value
given by our extended expression Eq. (15); (b) Titze’s (1988) theoretical
expression, (c) Titze’s (1992) empirical model.

Let us consider a numerical example, with k,=1.1, &,
=1 mm, B=1000 Pas/m, c=1m/s, K=2X10°Pa/m, T
=3 mm, 7=T/(2¢)=1.5 ms (Titze, 1988). Figure 2 shows the
phonation threshold pressure computed from Eq. (15), as a
function of the frequency f=w/(2). For comparison, the
figure also shows values from Titze’s (1988) Eq. (9). That
equation produces a horizontal line, since it is independent of
the frequency f, and coincides with Eq. (15) at f=0. Finally,
it also shows results from an empirical model by Titze
(1992), expressed by P,,=0.14+0.60(f/120)>. This equation
was obtained by fitting a quadratic polynomial to experimen-
tal measures of phonation pressures. As the example illus-
trates, Eq. (15) provides a good qualitative prediction of the
relation of phonation threshold pressure with oscillation
frequency.

V. CONCLUSION

We have presented an equation for the phonation thresh-
old pressure as a function of vocal-fold biomechanical pa-
rameters, which extends a previous result by Titze (1988). It
contains the vocal-fold oscillation frequency as an explicit
factor, and provides a good prediction for the observed in-
crease of the threshold pressure with oscillation frequency.

The analysis was based on Titze’s mucosal wave model,
and considering the general case of an arbitrary time delay
for the the mucosal wave to travel the glottal height. Several
interesting questions appear now for further research, such
as: (1) In the case of small time delay, the Hopf bifurcation at
threshold is of the subcritical type (Lucero, 1999). Is it still
subcritical at large time delays? (2) Titze (1992) built an
empirical model of the relation between phonation threshold
pressure vs frequency by fitting a quadratic polynomial to
empirical data. Could a better model be obtained by fitting a
function with the factor x/sin(x)? (3) Our analysis assumed a
rectangular prephonatory glottis, but it may be extended to a
convergent-divergent shaped glottis, as in Titze’s (1988)
work. (4) The mucosal wave model has been used to study
many aspects of phonation, including the following: the bal-
ance between the energy transferred from the airflow to the
tissues and the energy dissipated (Lucero, 1999); the optimal
glottal geometry for ease of phonation (Lucero, 1998); the
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influence of vocal-tract acoustics on phonation threshold
pressure (Chan and Titze, 2006); and characteristics of labial
oscillation in the avian syrinx (Laje and Mindlin, 2005).
Those and other similar studies could be improved by ex-
tending them to the general case of arbitrary time delay.

Finally, let us note that the two-mass model of the vocal
folds predicts a linear increase of phonation threshold pres-
sure when the natural frequencies of the model are increased
(e.g., Lucero and Koenig, 2005; Mergell et al., 1999), instead
of the above nonlinear relation. The consequences of that
difference, and a possible way to reconcile both models is
also a good subject for further analysis.
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