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Abstract: Functional data analysis is used to examine articulatory variabil-
ity across repetitions in normal speech, under different movement constraints.
A temporal normalization technique is applied to align trajectories of lips,
jaw, and tongue in vowel-consonant-vowel sequences. Next, an index of am-
plitude variability is computed, defined as the mean standard deviation be-
tween peak velocities of the consonantal closure by the active articulator, in
each VCV sequence. The results show that articulatory variability varies as a
function of both the phonetic requirements of the consonant and the biome-
chanical characteristics of the articulatory structures involved.
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1. Introduction

The issue of constancy and variability in speech production has been the subject of much
experimental and theoretical work (e.g., Adams et al., 1993; Gracco and Abbs, 1985; Lucero,
2004; Lucero et al., 1997; Sharkey and Folkins, 1985; Smith and Goffman, 1998; Smith et al.,
1995; Smith, 1995; Ward and Arnfield, 2001). Although it appears that variability is larger in
children than in adults, and also in speakers with neurological disorders compared to normal
subjects, the degree of variability in normal speech articulation is largely unknown. The same is
true for the potential articulatory, acoustic, and perceptual mechanisms governing constancy
and variability.

In this paper, we examine articulatory variability across repetitions in normal speech.
Since articulator trajectories are time-varying continuous curves, computing measures of
variability presents the difficulty that, theoretically, an infinite (continuous) amount of
information is required to describe the trajectory shapes. This problem can be adequately treated
by a functional data analysis [FDA; Ramsay and Silverman (1997)] approach. FDA constitutes
a set of analytical tools to explore patterns and variability in sets of data obtained from
observations of a repeated physical process. Although data is recorded discretely, FDA assumes
that such data may be described by smooth functions of time which may be evaluated at any
particular instant of time. The main advantage of this approach is that it takes account of the
underlying continuity of the physiological system generating the data, and thus it may capture
temporal relations in the data owing to this continuity (Ramsay and Silverman, 1997).

FDA techniques and applications to speech analysis were first introduced by Ramsay
et al. (1996). There, data smoothing and functional principal component analysis were applied
to lip trajectories during the production of utterances, to determine the main modes of variation
of lip motion. Later, Lucero et al. (1997) applied a nonlinear temporal normalization technique
to decompose a set of lip acceleration records into a common pattern and components of shape
and timing variability. This technique was also used to evaluate irregularity of voice signals
(Lucero and Koenig, 2000), and to assess variability of glottal gestures in children versus adults
(Koenig and Lucero, 2002). FDA has also been applied to fit a differential equation to lip
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trajectory data, and assess the variability of the forces acting on the lips (Lucero, 2002).
Here, we use the FDA temporal normalization technique to detect segments of

articulator trajectories with more or less variability, under different movement constraints. We
also define an index which allows us to compare variability across articulators and utterances.
Our general purpose is to evaluate the usefulness of this approach, and explore its application to
find movements which are more constrained than others, differences between active and passive
articulators and between different sounds, and similar issues.

2. Data

We collected horizontal and vertical displacement data of lips, jaw, and tongue in vowel-
consonant-vowel sequences, from four normal English-speaking adults, producing ten
repetitions of /api/, /ata/, /aka/ embedded in the carrier phrase ‘‘SayIagain.’’ The speakers were
naive to the specific purposes of the experiment, although they had had experience with this
recording technique before. Data were collected at a sampling rate of 625 Hz, from receivers on
the jaw, upper and lower lips, and at four locations on the tongue: one on the tip (TT: tongue tip),
one as far back as possible (TR: tongue root, typical position was 5.0–5.5 cm behind the tongue
tip, measured with the tongue protruded), and the other two spaced evenly between the front and
back extremes (TBL: tongue blade, and TB: tongue body). Two additional receivers, placed on
the nose bridge and the upper incisors, were used for the correction of head movement; thus,
they were not used for any measurements. For the jaw and lip receivers, only displacements in
the vertical direction were considered as this is the principal direction of movement (Ramsay
et al., 1996). The upper lip data were recorded but not used, because the upper lip motion is
small [it can be used for analyzing a derived measure of lip aperture (Löfqvist and Gracco, 1997;
Löfqvist, 2004)]. The jaw was not decoupled from the lip. Since we are interested in the lower lip
as an end effector, it should be measured with the jaw component included. For the tongue
signals, movement trajectories were decomposed into x and y components. Figure 1 shows an
example of measured trajectories.

Fig. 1. Measured articulator trajectories for subject LK, utterance ‘‘say aka again.’’ Vertical di-
mensions in cm.
1529-7853/05/6(2)/81/5/$22.506(2), April 2005 © 2005 Acoustical Society of America 81



Lucero et al.: Acoustics Research Letters Online [DOI: 10.1121/1.1850952] Published Online 25 January 2005

82 ARLO
3. Temporal normalization

All signal processing was performed using MATLAB. As preparation for the temporal
normalization, the sets of records for each subject and utterance were first vertically aligned by
subtracting the mean of the set. Next, all records were resampled to a common length of 201
points using spline interpolation, and this length was attributed an artificial time span of 0 to 1.
Finally, the records were put into vector form

xi~t!5@TTYi~t!,TTXi~t!,...,JAWYi~t!#
T, (1)

where i51,...,N, N is the number of records in each set (for each subject and utterance), and
TTYi(t), TTXi(t),...,JAWYi are the recorded trajectories.

The records in each set were aligned in time by nonlinearly distorting their time scales
through suitable warping functions hi(t). The warping functions were computed optimally, by
minimizing the following measure of the distance of the aligned records xi* (t)5xi@hi(t)# to their
average x̄* (t)5N21(i51

N xi* (t)

C5(
i51

N HE
0

1

ix̄* ~t!2xi* ~t!i2 dt1E
0

1

iDx̄* ~t!2Dxi* ~t!i2 dt1lE
0

1

wi~t!dtJ, (2)

where D denotes the first derivative, l is a roughness penalty coefficient, and wi(t) is the relative
curvature of hi(t) [computed as wi(t)5D2hi(t)/Dhi(t)]. This process is done iteratively, by com-
puting a new average after aligning the records, and realigning them again (Ramsay and Silver-
man, 1997). Three iterations were performed, after which there was no visual difference between
consecutive averages. After the alignment, the average of the normalized records represents the
underlying pattern common to all records, and the difference of each normalized record to the
average is the component of amplitude variation introduced by it (Lucero et al., 1997; Lucero,
2004).

Note in Eq. (2) that the distance measure was computed on both the displacement
records (first integral) and their first derivative (second integral). Inclusion of the first derivative
provides a finer alignment, since it is more variable than the displacement and thus contains
more events to align (Ramsay and Silverman, 1997). It also includes a smoothness constraint
(third integral), to control the allowed distortion of the time scales. The vector norm in Eq. (2) is
computed as the weighted measure

ix̄* ~t!2xi* ~t!i25@x̄* ~t!2xi* ~t!#T@diag~ai!#@x̄* ~t!2xi* ~t!#, (3)

where ai are weights, given by

ai5FE
0

1

x̄i*
2~t!dtG21

. (4)

The norm for the derivatives in the second integral of Eq. (2) is similarly computed. In this way,
the distance measures in Eq. (2) for each component of xi(t) are normalized according to the size
of the component, so that all of them (including displacements and derivatives) have the same
relative weight in the total measure.

The mean and standard deviations of the normalized records were computed in each
set, to visualize the distribution of amplitude variability along the trajectory pattern. For quan-
titative assessments, we also computed an index of amplitude variability, defined as the mean
standard deviation of normalized records across the region between peak velocities of the con-
sonantal closure by the active articulator, in each VCV sequence. The target productions were
segmented out of the carrier phrase interactively by viewing the audio signal and the kinematic
signals. All the labeling of peaks, valleys, and zero crossings was made algorithmically by se-
lecting a temporal window in the signals. In particular, the points of peak velocities were ob-
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tained from the first derivative of the signals, computed using a three-point algorithm with spline
smoothing (Ramsay and Silverman, 1997). Figure 2 shows an example of results for the vertical
displacement of the tongue tip.

4. Results

Figure 3 shows the computed indices for the four speakers. Our expectation was that the
articulators contributing to the required constriction/closure would show the least variability. In
fact, the indices show that, during the /k/ closure, vertical variability in the tongue root (TRY) is
relatively low compared to other articulators. This suggests that movements of the posterior
tongue are tightly constrained during production of velar closures. Variability in the jaw (JAWY)

Fig. 2. Vertical displacement of tongue tip for subject DR, utterance ‘‘Say ata again.’’ Top: re-
corded displacement. Middle: normalized records. Bottom: mean trajectory (blue curve) plus/
minus standard deviation (red curves). The vertical lines mark the peak velocity of the tongue tip
raising and lowering movements, and delimit the region over which the variability index was
computed. Vertical dimensions in cm.

Fig. 3. Indices of variability for all subjects. Vertical dimensions in cm.
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is among the lowest of all articulators during the alveolar closure for /t/, which is consistent with
past reports indicating that the jaw is a major contributor to raising and anchoring the tongue for
alveolars (Stone and Vatikiotis-Bateson, 1995). On the other hand, the results for the bilabial
stop /p/ show a different pattern. The indices indicate that variability for the active articulator
(lower lip, LLY) is among the highest of all articulators. The jaw shows a low variability,
although not the lowest relative to other articulators. We hypothesize that, in bilabial closures,
tissue compression upon lip contact may yield higher variability than in cases of an articulator
meeting a rigid surface such as the hard palate (Löfqvist and Gracco, 1997).

5. Conclusions

This letter has presented a technique for computing variability of a set of multidimensional
records. We believe that such use of FDA to quantify speech production variability has wide
applicability in studying questions of speech motor control. Our results indicate that articulatory
variability in normal adults varies as a function of both the linguistic constraints on speech
movements and the biomechanical characteristics of the articulatory structures involved. We are
currently expanding our data base of speech movement trajectories, to perform further analyses.

This technique may also have clinical utility by providing detailed profiles of an
individual speaker’s production variability, which could be used to assess the efficacy of
treatment. It might also be easily extended to deal with other physiological signals, and thus find
relevant applications in other areas.
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