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This paper presents an analysis of facial motion during speech to identify linearly independent
kinematic regions. The data consists of three-dimensional displacement records of a set of markers
located on a subject’s face while producing speech. A QR factorization with column pivoting
algorithm selects a subset of markers with independent motion patterns. The subset is used as a basis
to fit the motion of the other facial markers, which determines facial regions of influence of each of
the linearly independent markers. Those regions constitute kinematic “eigenregions” whose
combined motion produces the total motion of the face. Facial animations may be generated by
driving the independent markers with collected displacement records.
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I. INTRODUCTION

The general goal of this work is to develop a mathemati-
cal model of facial biomechanics for applications to speech
production and perception studies. The model must be ca-
pable of producing computer-generated animations of speech
with an acceptable level of realism and should allow for
direct manipulation of facial movement parameters �Munhall
and Vatikiotis Bateson, 1998�.

The core of such a system must be some mathematical
representation of the physiology of the human face. When
building models of facial physiology, two general strategies
have been followed �cf. Beautemps et al., 2001�. One is a
theoretical modeling strategy, in which the physiological
structure of passive tissues and active muscles is explicitly
described commonly by differential equations. The face be-
havior is simulated by computing the forces that act on the
tissues and their resultant deformations. In this way, the dy-
namics of the system is incorporated into the model. Such
models are theoretical in the sense that assumptions are made
in choosing the key attributes of the models and parameters
are estimated or determined from best available measures
from the literature. This strategy was pioneered by the
muscle-based facial animation work of Terzopoulos and Wa-
ters �1990�; Lee et al., �1995�; and Parke and Waters �1996�,
in which some of the facial muscles and some aspects of the
soft tissue were modeled. Following their work, a three-
dimensional �3D� biomechanical model of the face was de-
veloped for producing animations of speech �Lucero and
Munhall, 1999�. The model was driven by recorded perioral
electromyographic signals and, in a later version, by records
of facial kinematics �Pitermann and Munhall, 2001�. In gen-
eral, the model was able to generate animations with a rea-
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sonable level of visual realism and showed potential as a
computational tool to study the facial physiology of speech.
However, it has been argued that, in its current stage of de-
velopment, the strategy is still not appropriate for the in-
tended application to speech perception research �Lucero
et al., 2005�. Its main drawback is the difficulty of producing
a representation of the complex structure of muscles and pas-
sive tissues precise enough to capture details of speech
movement patterns and, at the same time, that could be eas-
ily adapted to different subjects.

Within this general strategy, the application of free form
deformations by Kalra et al. �1992� may also be included.
There each facial muscle is represented as a deformable fa-
cial region, whose motion is controlled by the movement of
a facial point. The geometry of the facial regions and their
deformation properties are defined based on information
from available anatomical data. Although the result is not a
dynamical model, it is still a theoretical representation of the
face �because it is based on average physical and anatomical
parameters and it thus represents a generic face�, and suffers
from the same drawbacks noted above.

A second strategy is empirical modeling. In this case, a
relation between various facial parameters measured during
speech is constructed. For example, in Kuratate et al.’s sta-
tistical modeling work �Kuratate et al., 1998�, principal com-
ponent analysis �PCA� is used to decompose a set of mea-
sured facial shapes into orthogonal components, and
determine a reduced base of eigenfaces. Arbitrary facial
shapes and movements are next generated by driving a linear
combination of the eigenfaces. The physiology of the face is
not modeled explicitly, although it is still present, in implicit
form, in the model’s equations. Besides facial kinematics,
other speech parameters may be incorporated into the model,
such as muscle electromyography and acoustics �Vatikiotis-

Bateson and Yehia, 1996; Kuratate et al., 1999�. Similar em-
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pirical modeling strategies using independent component
analysis �ICA� have also been proposed �Müller et al., 2005�.

In a previous work �Lucero et al., 2005�, an empirical
model was introduced that was based on decomposing the
face surface into a finite set of regions. The total motion of
the face was computed as the linear combination of the
movement of those regions. The model was built by analyz-
ing the recorded 3D position of a set of markers placed on a
subject’s face, while producing a sequence of sentences. An
algorithm grouped the markers into a set of clusters, which
had one primary marker and a number of secondary markers
with associated weights. The displacement of each secondary
marker was next expressed as the linear combination of the
displacements of the primary markers of the clusters to
which it belonged. The model was next used to generate
facial animations, by driving the primary markers and asso-
ciated clusters with collected data.

It was argued that the computed cluster structure repre-
sented the degrees of freedom �DOF� of the system. The
DOF are the independent modes of variation and thus the
independent sources of information. Subjects differ in the
information transmission from their faces and this may be
due in part to differences in their DOF. In the model, the
facial clusters define facial eigenregions, whose combined
motion forms the total motion of the facial surface.

This empirical model and the PCA �or ICA� approach
are based on linear modeling of the data which can result in
similar levels of accuracy in reconstruction of the data. How-
ever, the resulting solutions are quite different and serve dif-
ferent purposes. The PCA approach extracts global structure
and will produce a set of primary gestures. Its DOF are the
functional modes of deformation of the face. In the present
case, the aim is to identify a set of spatially distinct regions
that move independently as the DOF. There presumably is a
mapping between these two representations and it could be
hypothesized that the nervous system must know what to
control in its anatomical DOF to produce its gestural basis
set.

There are a number of advantages to focusing on the
spatial DOF. This approach focuses the data analysis on the
generating mechanism for gestures: The facial musculature.
The action of muscles is obviously spatially concentrated
and thus facial regions can be found that are associated with
individual muscles or synergies of muscles that are in close
proximity or whose actions are spatially localized. This
muscle-based approach is consistent with a productive tradi-
tion in the analysis of facial expression and the study of
perception of expressions �Ekman et al., 2002� and this ap-
proach has also been a powerful tool in facial animation
�e.g., Terzopoulos and Waters, 1990�. Another advantage of
finding regional DOF in a data set is that these regions can
be animated in arbitrary facial configurations. There is con-
siderable interest in speech perception research on the role of
individual talker characteristics in speech perception �e.g.,
Goldinger, 1996�. Studies that involve the use of animating a
generic face or the animation of one talkers morphology with

another talkers motion must solve a registration and mor-
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phing problem �Knappmeyer et al., 2003�. The identification
of key features and spatial regions is one form of solution to
this correspondence problem.

This empirical modeling approach is close to the articu-
latory modeling work of Badin, Bailly, et al. �Badin et al.,
2002; Beautemps et al., 2001; Engwall and Beskow, 2003�.
In their work, PCA is used to determine articulatory param-
eters to control the shape of a 3D vocal tract and face model.
For better correspondence to the underlying biomechanics,
some of the parameters �e.g., jaw height, lip protrusion, etc.�
are defined a priori, and their contributions are subtracted
from the data before computing the remaining components.
The present approach proposes to rely entirely on the data to
build the model, with as few prior assumptions as possible.
Instead of setting a model by defining the biomechanical
properties of skin tissue and muscle structure based on a
priori theoretical reasons, a possible model is inferred just by
looking at the measured motion patterns of the facial surface.

The algorithm presented by Lucero et al. �2005� had a
preliminary nature and had some drawbacks. For example, it
was necessary to define an initial facial mesh, linking nodes
corresponding to the initial position of the markers and leav-
ing “holes” for the eyes and mouth. Also, a more solid foun-
dation for the criteria for grouping the markers was desired.
In the present paper, an improved version is introduced,
which uses a QR factorization technique �Golub and Loan,
1996� to identify a linearly independent subset of facial
markers. This subset is next used as a basis to predict the
displacement of arbitrary facial points.

II. DATA

The data consist of the 3D position of 57 markers dis-
tributed on a subject’s face, recorded with a Vicon equipment
�Vicon Motion Systems, Inc., Lake Forest, CA� at a 120 Hz
sampling frequency. According to calibration data, the posi-
tion measures were accurate within 0.5 mm. An additional
six markers on a head band were used to determine a head
coordinate system, with the positive directions of its axes
defined as: the x axis in the horizontal direction from right to
left, the y axis in the vertical direction to the top, and the z
axis in the protrusion direction to the front. The position of
the 57 facial markers was expressed in those coordinates,
with the approximate location shown in Fig. 1. Neither the
morphology of subjects’ faces nor the precise placement of
the markers is exactly symmetrical and thus the markers
seem to be offset from the facial features in the schematic
and symmetrical face in the figure.

Data were recorded from 2 subjects �S1 and S2�, while
they were producing selected sentences from the Central In-
stitute for the Deaf Everyday sentences �Davis and Silver-
man, 1970�, listed in http://www.mat.unb.br/lucero/facial/
qr2.html. A large portion of the data for the marker at the left
upper eyelid �marker 13� of subject S1 was missing, due to
recording errors. Since the motion patterns of right and left
upper eyelids seemed very close �by visual assessment�, the
missing data of the left upper eyelid were copied from the

marker at the other eyelid. It will be shown later that the
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algorithm detected this artifact within the data, which serves
as a proof of its ability to analyze kinematic patterns.

A total of 40 sentences was recorded from subject S1
and 50 sentences from subject S2. In the case of S2, the set
of 50 sentences was recorded twice, forming two datasets
which will be denoted as S2a and S2b. In the recording ses-
sions, the subjects were asked to adopt a consistent rest po-
sition at the beginning of each sentence. The initial positions
of the markers were taken as representative of a rest �neutral�
configuration.

III. THE SUBSET SELECTION PROBLEM

This approach for building an empirical facial model is
based on the so-called subset selection problem of linear al-
gebra �Golub and Loan, 1996�. Assume a given data matrix
A�Rm�n and the observation vector b�Rm�1, with m�n,
and that a predictor vector x is sought in the least squares
sense, which minimizes �Ax−b�2

2. Assume also that the data
matrix A derives from observations of redundant factors.
Therefore, instead of using the whole data matrix A to pre-
dict b, it may be desirable to use only a subset of its columns,
so as to filter out the data redundancy. The problem is, then,
how to pick the nonredundant columns. In the present case of
facial modeling, the data matrix will contain the displace-
ments of the 57 facial markers, arranged in columns. A small
subset of markers �columns of the data matrix� must be se-
lected which may be used to predict the motion of any other
arbitrary facial point.

The idea of reducing the data set is consistent with the
long-held view that the speech production system is itself
low-dimensional. As Bernstein �1967� suggested about motor
control in general, the nervous system acts to reduce the
potential DOF. In speech the muscles and articulators are
coupled synergistically during articulation in order to pro-
duce particular sounds.

To solve the subset selection problem, the most linearly
independent columns of matrix A must be identified. Let Ak

denote a subset of k columns of A. A measure of “indepen-
dency” of the subset is provided by the smallest singular
value of Ak, �k, which measures the distance of Ak to the set
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FIG. 1. Spatial distribution of the marker positions superimposed on a sche-
matic face.
of k-rank singular matrices, in the 2-norm. Thus, it indicates
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how far Ak is from being a singular matrix. Consequently, the
smaller �k, the more independent the subset Ak. In principle,
the subset selection problem could be solved by testing all
possible combinations of k columns from the total of n col-
umns of A. The number of possible combinations is
n! / �k!�n−k�!�, which could be prohibitively large. In the
present case, with n=57 and adopting k=10 as an example,
the number of combinations is 4.32�1010. So far, it appears
that an exhaustive search is the only means to compute the
optimal solution to the problem �Lawson and Hanson, 1987;
Björck, 2004�.

A possible solution to the subset selection problem is
provided by the algorithm of QR factorization with column
pivoting �Golub and Loan, 1996; Chan and Hansen, 1992�.
That algorithm decomposes A in the form A�=QR, where
��Rn�n is a column permutation matrix, Q�Rm�n is an
orthogonal matrix, and R�Rn�n is an upper triangular ma-
trix with positive diagonal elements1 The first column of the
permutated matrix A� is just the column of A that has the
largest 2-norm �euclidean norm�. The second column of A�
is the column of A that has the largest component in a direc-
tion orthogonal to the direction of first column. In general,
the kth column of A� is the column of A with the largest
component in a direction orthogonal to the directions of first
k−1 columns �or, equivalently, is the column of A which has
maximum distance from the subspace spanned by the first
k−1 columns �Björck, 2004��. The diagonal elements of R
�rkk�, also called the R values, measure the size of those
orthogonal components; they appear in decreasing order for
k=1, . . . ,n, and tend to track the singular values of matrix A.
Thus, the algorithm reorders the columns of A to make its
first columns as well conditioned as possible. The first k
columns of A� may be then adopted as the sought subset of
k least dependent columns.

Another useful property of the above algorithm is that it
reveals the rank of matrix A. Let us define the following
block partitions for R,

R = �R11 R12

0 R22
� , �1�

where R11�Rk�k, and the dimensions of the other blocks
match accordingly. If rank�A�=k�n, then R22=0. Letting �i,
for i=1, . . . ,n be the singular values of A, with �1��2

� ¯ ��n, it may be shown that �k+1� �R22�2. Therefore, a
small value of �R22�2 implies that A has at lest n−k+1 small
singular values, and thus A is close to being rank k �Chan,
1987�. As a tolerance value, �, it is usual to consider the level
of uncertainties or precision of the data. Hence, a value of
�R22�2�� implies that A has �-rank2 k.

A number of other algorithms have been proposed to
find solutions to the subset selection problem, based, for in-
stance, on singular value decomposition �Golub and Loan,
1996�, search techniques exploiting partial ordering of the
variables, stepwise regression algorithms �Lawson and Han-
son, 1987�, and backward greedy algorithms �de Hoog and
Mattheij, 2007�. However, the QR factorization offers a
number of advantages �e.g., Golub and Loan, 1996; Björck,
2004; Setnes and Babuska, 2001; Chan and Hansen, 1992;

Bischof and Quintana-Ort, 1998�: It is computationally sim-
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pler and numerically robust. It detects the rank of the data
and provides a good technique for solving least squares prob-
lems, as shown below. It has been used in numerous techni-
cal applications of the subset selection problem, including
fuzzy control systems �Setnes and Babuska, 2001�, neural
network design �Kanjilal et al., 1993�, signal bearing estima-
tion �Prasad and Chandna, 1991�, noise control systems
�Ruckman and Fuller, 1995�, very large scale integrated array
implementation �Lorenzelli et al., 1994�, and wireless com-
munication system design �Migliore, 2006�, and is adopted
in the present study.

Assume that the matrices Q, R, and � have been com-
puted, so that A�=QR, and let �= ��1 �2�, where �1

�Rn�k, �2�Rn�n−k. The first k columns of A� are there-
fore given by A�1 and are selected as a subset of k indepen-
dent columns. An observation vector b may be predicted by
minimizing �A�1x−b�2

2. Letting Qtb= �c d�T, where c
�Rk�1, d�Rn−k�1 then the minimizer may be easily com-
puted as the solution of the upper triangular system R11x=c
�Golub and Loan, 1996�.

In the present case, the k columns of A�1 will be used to
predict the remaining n−k columns of A, given by A�2, in
the least squares sense. The problem may be expressed as the
minimization of

E = �
i

�A�1xi − �A�2�i�2
2, �2�

where the subindex i represents each of the n−k columns of
A�2. Using the Frobenius norm �euclidean matrix norm�,
produces

E = �A�1X − A�2�F
2 , �3�

where X is a k� �n−k� matrix. Since the norm is invariant
under orthogonal transformations, then

E = �QTA�1X − QTA�2�F
2 = �R11X − R12�F

2 + �R22�F
2 . �4�

Therefore, the least square minimizer is the solution of the
upper triangular system R11X=R12, and the residual is �R22�F.

IV. ANALYSIS OF FACIAL DATA

The displacement of each marker was computed relative
to the initial neutral position. For each subject, the markers’
displacements for all sentences where concatenated and ar-
ranged in a displacement matrix A�R3M�N, where N is the
number of markers �57� and M is the total number of time
samples of all the concatenated sentences. QR factorization
with column pivoting was then applied to data matrix A,
using a standard MATLAB implementation.

Figure 2 shows the computed R values, normalized to
the size of matrix R, for both subjects. In both cases, the
values decrease smoothly. In the case of subject S1, there is
a sudden drop for the last value, with r56,56=22.70 mm and
r57,57=0.10 mm. Since the precision of the data is �
	0.5 mm, then for k=56, �R22�2= 
r57,57
�� and therefore
rank�A�=56. This result indicates that data for one marker
are redundant. In fact, it reflects the filling of missing values
for the left upper eyelid from the data collected for the right

one.
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In the case of subject S2 �datasets S2a and S2b�, there is
no gap in the data, and rank�A�=57. Thus, any model built
from a subset of less than 56 or 57 markers will necessarily
result in a loss of information.

Figure 3 shows the first 12 R values normalized to the
size of matrix R, for subject S1, when varying the number of
sentences in the dataset. The values stabilize for sets with
more than approximately 25 sentences. Any larger data set is
therefore reliable enough for building a model. The datasets
for subject 2 produce similar results, and are therefore not
shown.

Table I shows the index of the first 16 columns �or mark-
ers� selected by the algorithm, for the various datasets. A set
of 30 sentences was used in all analyses.

In all cases, the first selected marker is the 40th, at the
center of the lower lip �see Fig. 1�, which has therefore the
largest displacement �largest 2-norm of the associated col-
umn�. The second is marker 34, at the lip’s left corner. From
the third marker, subject S1 shows a different pattern than
subject S2. In the case of subject S1, the next four markers
are lip’s right corner �38�, right eyebrow �2�, upper lip center
�36�, and left eyebrow �6�. Subject S2, on the other hand,
besides the lip’ right corner �38�, incorporates the eyelids �13
or 11�, and markers at the lower-right portion of the face �42,
43, 47, 48, or 56�, depending on the dataset. The upper lip
marker �6� appears later, in position 8th–10th. The four col-
umns of results for subject S2 show similar markers, al-
though some differences in the selected markers and the or-
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FIG. 2. R values �diagonal elements of matrix R� normalized to the size of
R, for subjects S1 �circles�, S2a �stars�, and S2b �triangles�.
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der they appear may be noted. For example, looking only at
the first seven markers in the perioral region for S2, we note
that 6 of them appear in the four data sets: 34, 36, 38, 40, 42,
and 47. The remainder marker is 48 �S2b�, 56 �S2a and
S2b*�, or 43 �S2a*�. Markers 48 and 56 are both at the chin
and close together, so they may be considered as belonging
to the same facial region. Marker 43, on the other hand,
belongs from a different region, close to the right border of
the face.

In the case of subject S1, the last selected marker is the
13th �left upper eyelid�. Since the algorithm already detected
a rank 56 for the data �and therefore a redundant data col-
umn�, then the data column for that marker is redundant.
That result provides a validation of the algorithm, showing
its capability to detect artifacts introduced into the data.

Once the main columns or markers have been selected, a
least square fit of the remaining columns may be computed
by solving R11X=R12, as explained in the previous section.
As a numerical example, a basis of ten independent markers
�this number includes up to the lower lip marker in all
datasets� was adopted. Figure 4 shows the results of the fit,
for subject S1. There the fitting coefficients computed for the
secondary markers have been extended to other facial points
by cubic interpolation to improve visualization of the results.
Note that, in general, the regions associated with each of the
markers include both positive and negative subregions,
where motion is in the same and opposite direction, respec-
tively, to the marker’s motion. Motion of the each kinematic
region is therefore determined by the motion of its associated
independent marker, and the total motion of the face is com-
posed by the linear combination of all the kinematic regions.
The regions seem to distribute in similar numbers and loca-
tions on both sides of the face, although they show a large
asymmetry. Regarding the eyelids, although only marker 11
�right eyelid� was identified as an independent marker,
marker 13 �left eyelid� has a fit coefficient of 1, which indi-

TABLE I. Selected columns �markers� of data matrix A. For S1, S2a, and
S2b, the first 30 sentences of each dataset were used. In case of S2a* and
S2b*, the last 30 sentences �from a total of 50� of the respective datasets
were used.

Order S1 S2a S2b S2a* S2b*

1 40 40 40 40 40
2 34 34 34 34 34
3 38 13 13 13 11
4 2 38 38 42 38
5 36 47 48 38 56
6 6 42 47 43 42
7 20 6 11 47 6
8 49 56 36 11 47
9 11 11 42 36 13
10 52 36 49 6 36
11 54 48 6 49 12
12 47 39 53 12 48
13 22 52 20 48 39
14 32 20 39 16 16
15 39 49 56 20 53
16 48 14 14 52 20
cates identical motion patterns.
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For comparison, regions for subject S2 are shown in
Figs. 5 �S2a� and 6 �S2b�, which correspond to markers at
the center of lower lip, both lip corners, and center of upper
lip. Particularly, note that although the upper lip marker ap-
pears in different positions in the list of independent markers
in Table I: 8th for S2a and 10th for S2b, the associated re-
gions have similar shapes.

Recall that each marker is selected by the algorithm in a
way such that its motion component in a direction orthogonal
to the motion of the already selected markers is maximum.
The orthogonal directions are represented by the columns of
matrix Q, and the components of the markers’s motion in
each of the orthogonal directions is given by the rows of
matrix R. Figure 7 shows plots of the first four rows of R for
subject S1 �related to markers 40, 34, 38, and 2�, extended to
the whole facial surface by cubic interpolation. The plots
therefore represent regions with motion components in the
first four orthogonal directions. The first orthogonal direction
is given by the jaw-lower lip motion, which has the largest
norm, and clearly dominates motion of the lower half of the
face. The left lip corner has the largest motion component
orthogonal to the lower lip’s motion, and next the right lip

FIG. 4. �Color online� Independent kinematic regions for subject S1, when
a basis of ten markers is adopted. The darker the region, the larger the least
square fit coefficient of each point relative to the main marker. A minus sign
indicates a subregion with negative weight.
corner, with the largest component orthogonal to both the
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lower lip and the left lip corner. The lip corner regions reflect
the mouth widening-narrowing under the combined action of
the orbicularis oris, zygomatic major, and other perioral
muscles at each side of the face. Naturally, even though mo-
tion of both lip corners might be strongly correlated, they are
associated with different regions because their motion is con-
trolled by different groups of muscle and happens in opposite
directions. This is precisely one of the intended objectives:
rather than identifying particular facial gestures such as a
mouth widening/narrowing action, the algorithm identifies
spatial regions associated with different muscle groups.

V. COMPUTER GENERATION OF FACIAL ANIMATIONS

After the main markers and fitting matrix X have been
computed, facial animations of arbitrary speech utterances

FIG. 5. �Color online� Four independent kinematic regions for subject S2a
and for a basis of ten markers. The darker the region, the larger the least
square fit coefficient of each point relative to the main marker. A minus sign
indicates a subregion with negative weight.

FIG. 6. �Color online� Four independent kinematic regions for subject S2b,
and for a basis of ten markers. The darker the region, the larger the least
square fit coefficient of each point relative to the main marker. A minus sign

indicates a subregion with negative weight.
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may be produced by driving the selected independent mark-
ers with collected signals. Letting P1�Rn�k be the displace-
ment matrix of the k main markers �relative to the initial
neutral position�, then the displacement P2 of the secondary
markers is just P2= P1X. The neutral position of all markers
is next added back, to obtain their position in head coordi-
nates. Finally, the position of other arbitrary facial points
may be generated by using, e.g., cubic interpolation. Using
this technique and the results of Table I, animations were
produced for sentences 31–40 for subject S1, and 31–50 for
subject S2. A virtual facial surface was generated by cubic
interpolation of the recorded markers, built from a grid of
30�30 points. The animations look visually realistic, with-
out any noticeable distortion in the motion pattern. They are
available in http://www.mat.unb.br/lucero/facial/qr2.html in
AVI format. Figure 8 shows an example of an animation
frame.

Figure 9 shows the trajectory of marker 56 at the jaw for
subject S1 in one sentence �31�, when using a basis of ten

FIG. 7. �Color online� First four orthogonal regions for subject S1. Each
plot shows facial points with patterns of motion in the first four orthogonal
directions. The darker the region, the larger the motion. A minus sign indi-
cates a subregion with negative weight.
FIG. 8. �Color online� Example of a facial animation frame.
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markers. The plots show that the model recovers the jaw
trajectory with good accuracy. The maximum errors are 0.8,
2.0, and 0.9 mm for the x, y, and z directions, respectively.

Figure 10 shows the mean error of the computed trajec-
tories when varying the number of independent markers, for
both subjects in all the above sentences �the mean error is
computed from the secondary markers only�. Naturally, the
error decreases when the number of markers is increased.
The absolute error seems low even with few markers, but at
the same time, the relative error seems high. The high rela-
tive error is a consequence of the small displacements of
most markers.
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FIG. 9. Trajectory of marker 56 at the jaw for subject S1 and sentence 31,
when using a basis of ten markers. Full line: trajectory computed from the
model. Broken line: measured trajectory.
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FIG. 10. Mean error of computed trajectories for subject S1 �sentences 31 to
40� vs number of markers in the selected basis. Top: absolute error. Bottom:

relative error.

J. Acoust. Soc. Am., Vol. 124, No. 4, October 2008 J. C. Luc
VI. CONCLUSION

The paper has shown that the QR factorization with col-
umn pivoting algorithm provides a convenient technique for
facial motion analysis and animation. It identifies a subset of
independent facial points �markers�, which may be used to
build an individualized linear model of facial kinematics.
Each of the independent points defines a kinematics region,
whose motion is determined by the point’s motion. The total
motion of the face is then expressed as the linear combina-
tion of the motion of the independent kinematic regions. The
regions vary for different subjects, and to some degree, for
different data sets. In the studied cases, however, the lower
lip and both lip corners tend to be among the first �and there-
fore most independent� kinematic regions.

Note that the purpose of the technique is not just the
reduction of the dimensionality of the data. For that purpose,
the singular value decomposition �used in PCA and ICA
techniques� is superior, since it permits the computation of
the matrix of a given rank k that is closest to the data matrix
A. Its disadvantage, for the present modeling objective, is
that the computed k-rank matrix is defined in terms of a basis
of k eigenvectors �the singular vectors�, which do not belong,
in general, to the set of column vectors of the original data.
The proposed technique, on the other hand, uses a basis
formed by column vectors of the data matrix, at the expense
of achieving a suboptimal overall dimension reduction.
However, as explained in Sec. I, the PCA and the QR factor-
ization methods are defining DOF differently, and by exten-
sion their notion of redundant features of the data are quite
different. Thus, the optimality of the dimension reduction
needs to be considered in this light. The two analyses are not
producing unique decompositions of the data and therefore
the residual variances are quite different.

The model has an empirical nature, however, it reflects
the underlying biomechanical structure of the face and may
be used to infer aspects of that structure. The kinematic re-
gions are the result of the interaction of the muscular driving
forces and the the biophysical characteristics of skin tissue.
Normally, when building a mathematical model of a given
physiological system, one wants to separate out the plant
characteristics from the control signals that are instantiated
in the muscle activity. The present model, on the other hand,
provides a lumped representation of the facial biomechanics.

In biological motion �point light� studies of human gait
patterns, the motion is said to contain two sources of infor-
mation �Troje, 2002�: “motion-mediated structural informa-
tion” and information that is strictly dynamical �e.g., patterns
of accelerations and velocities�. The human perceptual sys-
tem is sensitive to both. The point light displays reveal struc-
tural information by revealing the rigid body segments and
their dimensions as well as showing where the segment
joints are. The face is a unique biomechanical system and the
analysis of its soft tissue deformations is different from
studying articulated motion like locomotion. However, mo-
tion patterns of the face can reveal its structural form. In this
sense, the proposed technique is carrying out biomechanical
analyses of the face. For each individual, it is letting the

motions define what regions of the face move as an indepen-
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dent unit, what the boundaries of the surface regions are, and
where the spatial peak of motion is located. This can be seen
as a lumped representation of the muscular actions and their
influence on the facial tissue biophysics.

Many aspects of the technique require further improve-
ment; for example, a criteria to determine the appropriate
number of independent markers to be selected is needed. An
important issue that must be also considered is that the this
modeling approach is dependent on the data captured by the
finite set of facial markers. Therefore, building a successful
facial model would require researchers to cover a subject’s
face densely enough to capture all details of its kinematic
behavior, or require researchers to place a smaller number of
markers at optimal positions. Those and related issues are
currently being considered as next research steps.
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