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This letter proposes a correction to an equation by Titze [J. Acoust. Soc. Am. 75, 570–580 (1984)]

for the volume velocity of the glottal air flow given the glottal area and other laryngeal parameters.

It shows that the equation produces non-differentiable waveforms at the instants of glottal closure

and opening, if the glottal area is also not differentiable at those instants. By adding an air viscosity

term to the equation, twice-differentiability is obtained. Also, the letter corrects a sign error in the

original formulation. VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4919297]
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I. INTRODUCTION

Numerical simulations of voice production routinely

involve computing the volume velocity of the glottal air flow

given the cross-sectional glottal area and other laryngeal pa-

rameters. A simple and widely used equation has been given

by Titze (1984),

ug ¼
agc

kt
� ag

A�
6

ag

A�

� �2

þ 4kt

c2q
pþs � p�e
� �" #1=2

8<
:

9=
;;

(1)

where ug is the flow volume velocity, ag is the glottal area, c
is the speed of sound, kt is a transglottal pressure coefficient,

q is the air density, pþs and p�e are the incident pressure

waves to the glottis coming from the subglottal and supra-

glottal vocal tracts, respectively, and A� is an effective vocal

tract area given by 1=A� ¼ 1=As þ 1=Ae, where As and Ae

are the entry areas to the subglottal and supraglottal vocal

tracts, respectively. According to Titze (1984), the plus sign

for the term in brackets corresponds to pþs � p�e � 0, and the

negative sign corresponds to pþs � p�e � 0.

From the computed glottal flow rate, reflected compo-

nents of the subglottal and supraglottal pressure waves

are obtained, and these are used as inputs to wave reflection

analogs of the subglottal and supraglottal vocal tracts,

respectively.

A drawback of Titze’s equation, the remediation of

which is the object of this letter, is that the derivative

dug=dag does not tend to zero when ag ! 0. This letter also

shows that there is a sign error in the equation for the case

pþs � p�e � 0, the correct form of which is

ug ¼ 6
agc

kt
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(note the absolute value for the difference jpþs � p�e j), with

the same sign convention as above.

The case of pþs � p�e � 0 implies a negative glottal flow

and should be rare during normal phonation. However, simu-

lations of voice production performed as reported by Lucero

et al. (2013) show brief periods of negative flow at voice off-

set, when the lung pressure is reduced to zero. Therefore, the

sign correction is required in order to obtain a valid formula

of general application.

Regarding the time derivative, a quick calculation

shows that

lim
ag!0

dug

dag
¼ 62

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpþs � p�e j

ktq

s
; (3)

which, in general, is not zero (except in the particular case of

pþs ¼ p�e ). Therefore, if the glottal area waveform is not dif-

ferentiable (smooth) at the time of glottal closure (i.e., when

the opposite vocal folds collide and close the glottis with the

consequent interruption of the airflow), then neither will be

the computed glottal flow. This result might pose a problem

for the application of Eq. (2) for voice synthesis. It is well

known that non-smoothness increases the energy content of

higher harmonics, which results in artificial timbres of the

synthesized sound.

Suppose that tc � t � to is the time interval in which

the glottis is closed. Then, agðtÞ ¼ 0 and ugðtÞ ¼ 0 for tc
� t � to, and dag=dtðtÞ ¼ 0 and dug=dtðtÞ ¼ 0 for tc < t < to.

Differentiability of ugðtÞ at tc demands

lim
t!t�c

dug

dt
¼ lim

t!tþc

dug

dt
¼ 0: (4)

Assume, for the sake of simplicity, that the glottal area is the

only time-varying parameter in Eq. (2). Then

dug

dt
¼ dug

dag

� �
dag

dt

� �
: (5)
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Therefore, if limag!0þðdug=dagÞ 6¼ 0, differentiability of the

glottal flow demands limt!t�c dag=dt ¼ 0, and so the glottal

area must be differentiable at t¼ tc. A similar conclusion is

obtained for the instant of glottal opening t¼ to.

In fact, popular models of the vocal fold oscillation

produce non-differentiable glottal area waveforms. For

example, in the Phase Delayed Overlapping Sinusoid

(PDOS) and Truncated and Exponentially Raised Sinusoid

(TERS) models (Titze and Alipour, 2006) of the vocal fold

kinematics and also in some lumped representations in

terms of mass-damper-spring oscillators (e.g., Avanzini,

2008; Steinecke and Herzel, 1995; Story and Titze, 1995),

the glottal area is first computed from the vocal fold dis-

placement and next truncated at ag¼ 0 or at some small

value e > 0. At the instants of contact onset and release, the

glottal area is non-differentiable.

Smooth results may be obtained by producing a gradual

area transition between an open and a closed glottis, at the

expense of a complexity increase of the models. For exam-

ple, a zip-like closure and opening may be simulated by con-

sidering a triangular geometry for the glottal channel

(Birkholz et al., 2011; Titze, 1984). In the two-mass model

of the vocal folds, a gradual closure has been simulated by

assuming that mechanical contact between the folds begins

when the glottal area decreases below a positive threshold

value, i.e., before a full glottal closure (Pelorson et al.,
1994). A simpler phenomenological approach is to “round”

the corners of the glottal area waveform at the times of glot-

tal closure and opening by applying shape transformations

(Schoentgen and Lucero, 2013). However, an equally simple

but physically based solution might be more desirable.

This letter proposes a third alternative: inclusion of an

air viscosity term in Eq. (2). The rationale is that, when the

glottis is narrow and almost closed, the viscosity of the air

becomes a dominant factor (Pelorson et al., 1994). In such a

situation, the pressure drop DP along the glottal channel is

commonly approximated by the Poiseuille formula for flow

between parallel plates,

DP ¼ 12lL2Tug

a3
g

; (6)

where l is the air viscosity coefficient, L is the glottal length

in the anterior-posterior direction, and T is the glottal depth

in the direction of the airflow (van den Berg et al., 1957).

Equation (6) produces the sought limag!0þðdug=dagÞ ¼ 0,

and Sec. II shows how to incorporate it into the glottal flow

computation.

We note that more complex models of flow viscosity

have been proposed, accounting for glottal channels of arbi-

trary shapes, unsteady flow and other effects (e.g., Deverge

et al., 2003; Howe and McGowan, 2010; Krane and Wei,

2006). In principle, any of those models would achieve the

desired smoothing. However, experimental assessments have

found that the Poiseuille model provides a good prediction

of observed flow behavior (Deverge et al., 2003). At the

same time, the simplicity of the model allows for its inclu-

sion as a small correction to Titze’s equation.

II. CORRECTION TO THE GLOTTAL FLOW EQUATION

We start with a modified form of Bernoulli’s equation

for the glottis,

Ps � Pe ¼
ktq
2

jugjug

a2
g

þ c
ug

a3
g

; (7)

where Ps and Pe are the subglottal and supraglottal air pres-

sures, respectively, and c ¼ 12lL2T. Equation (7) is the

expression used by Titze (1984) to derive his flow equation,

to which an air viscosity term has been added (following van

den Berg et al., 1957). The absolute value in the first term is

required to obtain a negative volume velocity when Ps<Pe.

Next, the steps outlined by Titze (1984) are retraced.

The subglottal and supraglottal air pressures are decomposed

into forward and backward components,

Ps ¼ pþs þ p�s ; Pe ¼ pþe þ p�e : (8)

The reflected components at the glottis are

p�s ¼ �
qcug

As
þ rsp

þ
s ; (9)

pþe ¼
qcug

Ae
þ rep�e ; (10)

where rs and re are subglottal and supraglottal reflection

coefficients, respectively. In his derivation, Titze (1984) con-

sidered rs ¼ re ¼ 1; however, the reflections coefficients

appear as explicit parameters in updated formulations of the

theory (Titze and Worley, 2009).

Substituting Eqs. (8)–(10) to into Eq. (7) yields

ktq
2

jugjug

a2
g

þ qc

A�
þ c

a3
g

� �
ug � dp ¼ 0; (11)

where we have used dp ¼ ½ð1þ rsÞpþs � ð1þ reÞp�e � to sim-

plify the notation.

Equation (11) has the form

c2jugjug þ c1ug � c0 ¼ 0; (12)

with c1; c2 > 0. Assuming ug � 0, the equation becomes

c2u2
g þ c1ug � c0 ¼ 0 with the solutions

ug ¼
�c16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ 4c0c2

p
2c2

: (13)

However, the condition ug � 0 is satisfied only when c0 � 0

and the square root is taken with the positive sign.

Next, consider the case ug < 0. Equation (12) takes the

form �c2u2
g þ c1ug � c0 ¼ 0, with the solutions

ug ¼
c16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 � 4c0c2

p
2c2

: (14)

The condition ug < 0 is satisfied only when c0 < 0 and the

square root is taken with the negative sign.
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Combining both cases, we conclude that Eq. (12) has

the solutions

ug ¼ 6
�c1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ 4jc0jc2

p
2c2

 !
; (15)

where the positive sign corresponds to c0 � 0 and the nega-

tive sign corresponds to c0 < 0.

Applying the above formula to Eq. (11) and rearranging

terms, we obtain

ug ¼ 6
agc

kt

(
� ag

A�
þ c

qca2
g

þ ag

A�
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qca2
g

� �2

þ 2kt

c2q
jdpj

" #1=2
)
: (16)

Note that this equation, with c¼ 0 and dp ¼ 2ðpþs � p�e Þ
(i.e., rs ¼ re ¼ 1), reduces to Eq. (2), with a sign correction

for Titze’s original Eq. (1).

Nevertheless, Eq. (16) poses a new problem: division by a

small number when ag ! 0þ (in the terms with coefficient c),

which causes numerical instability. To solve Eq. (15) numeri-

cally, it is multiplied and divided by c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ 4jc0jc2

p
,

which results in

ug ¼
62jcoj

c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ 4jc0jc2

p : (17)

Noting further that the positive sign applies when c0 � 0 and

the negative sign applies when c0 < 0, then the above equa-

tion simplifies to

ug ¼
2co

c1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

1 þ 4jc0jc2

p : (18)

Again, applying the new formula to Eq. (11) and rear-

ranging terms, we obtain

ug ¼
2a3

gdp

qca3
g

A�
þ cþ

qca3
g

A�
þ c

� �2

þ 2ktqa4
gjdpj
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(19)

where division by a small value of ag is avoided. Note also

that, since c > 0, the denominator is never 0 (its minimum

value is 2c).

A quick calculation shows that, when ag ! 0þ;
ug ! a3

gdp=c, which is the Poiseuille formula for viscous

flow, and dug=dag ! 0. Further, d2ug=da2
g ! 0.

III. EXAMPLE

Let us illustrate the previous results with an example. A

glottal area waveform with amplitude of 0.15 cm2, frequency

of 100 Hz, open quotient of 0.6 and skewing to the right was

simulated with the TERS model (Titze and Alipour, 2006),

ag tð Þ ¼ 0:15 max 0; 1þ 500t

0:6

� �
sin

100pt

0:6

� �" #
: (20)

Next, the glottal flow rate was computed using Eqs. (2) and

(19) with L¼ 1.6 cm, T¼ 0.35 mm, kt¼ 1, As ¼ Ae ¼ 3 cm2,

c¼ 35 000 cm/s, q ¼ 0:00114 g/cm3, � ¼ 0:000 186 g/(cm s)

and a constant dp ¼ 800 Pa.

Results are shown in Fig. 1. Clearly, Eq. (19) produces a

smooth waveform for the glottal flow rate, first derivative

included, while Eq. (2) produces a non-differentiable wave-

form at the instant of glottal closure. At the same time, there

is no relevant effect on the general shape of the glottal pulse,

except for an amplitude reduction of 3.3%. The effect of the

correction on the flow spectrum may be assessed by means of

the spectral ratio SR ¼ 10 logðElow=EhighÞ, where Elow and

Ehigh are the energy contents below and above 1 kHz, respec-

tively (Kitzing, 1986). Another useful measure is the spectral

balance (SB), defined as the critical frequency which divides

the spectrum into low and high frequency regions of equal

energy. For the waveforms in the figure and a sampling fre-

quency of 20 kHz, Eq. (2) produces SR ¼ �3:5 dB and SB

¼ 2295 Hz, whereas Eq. (19) produces SR ¼ �3:2 dB and

SB ¼ 2138 Hz. The spectral ratio and balance decrease by

approximately 7%, which indicates a clear reduction of the

high frequency content in the new model and is of the same

order of magnitude as the differences reported between strained

and lax voices in long-term average spectra (Kitzing, 1986).

IV. CONCLUSION

In summary, this letter proposes Eq. (19) as a replace-

ment for Eq. (1) from Titze (1984). By incorporating an air

viscosity term, the new equation produces a smooth volume

FIG. 1. (Top) Volume velocity of the glottal flow vs time. (middle)

Expanded view of the volume velocity around the time of glottal closure.

(Bottom) First derivative of the volume velocity. Full line shows the results

from Eq. (19); dashed line shows the results from Eq. (2).
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velocity of the glottal flow that is twice-differentiable at the

instants of glottal closure and opening, even when the glottal

area waveform is not smooth at those instants. The practical

advantage of the proposed equation is that it allows for the

use of simple vocal fold models which truncate the glottal

area waveform at glottal closure.

In studies using the two-mass model of the vocal folds,

increased smoothness of the glottal flow has been obtained

by adding a flow component produced by deformation of the

vocal folds during their collision (Pelorson et al., 1994), and

also by considering an incomplete glottal closure because of

the presence of a posterior glottal opening (Za~nartu et al.,
2014). If desired, both effects may be incorporated also to

the above flow model. Note, however, that Eq. (19) allows

for a simple adjustment of the degree of smoothing by using

coefficient c as a control parameter.

If air viscosity is neglected by letting c � 0, then the de-

nominator of Eq. (19) takes small values when ag ! 0 caus-

ing numerical instability. In that case, Eq. (2) should be used

instead, which incorporates a sign correction to Titze’s origi-

nal equation.

It must be noted also that our analysis has not considered

the effect of a moving separation point of the air flow from the

walls of the glottal surface. In fact, the glottal area ag in Eqs.

(2) and (19) must be computed at the point of airflow separa-

tion, and the location of that point moves during the oscillatory

cycle (e.g., Pelorson et al., 1994). Simplified representations of

such movement may also cause discontinuities in the wave-

form of the glottal flow (e.g., Howe and McGowan, 2010).
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de Aperfeiçoamento de Pessoal de N�ıvel Superior of Brazil.

Avanzini, F. (2008). “Simulation of vocal fold oscillation with a pseudo-

one-mass physical model,” Speech Commun. 50, 95–108.

Birkholz, P., Kr€oger, B. J., and Neuscheafer-Rube, C. (2011). “Synthesis of

breathy, normal, and pressed phonation using a two-mass model with a tri-

angular glottis,” in Interspeech 2011, Florence, Italy, pp. 2681–2684.

Deverge, M., Pelorson, P., Vilain, C., Lagr�ee, P.-Y., Chentouf, F., Willems,

J., and Hirschberg, A. (2003). “Influence of collision on the flow through

in-vitro rigid models of the vocal folds,” J. Acoust. Soc. Am. 114,

3354–3362.

Howe, M. S., and McGowan, R. S. (2010). “On the single-mass model of

the vocal folds,” Fluid Dyn. Res. 42, 015001.

Kitzing, P. (1986). “LTAS criteria pertinent to the measurement of voice

quality,” J. Phonetics 14, 477–482.

Krane, M. H., and Wei, T. (2006). “Theoretical assessment of unsteady

effects in phonatory aerodynamics,” J. Acoust. Soc. Am. 120, 1578–1588.

Lucero, J. C., Schoentgen, J., and Behlau, M. (2013). “Physics-based syn-

thesis of disordered voices,” in Interspeech 2013, Lyon, France, pp.

587–591.

Pelorson, X., Hirschberg, A., van Hassel, R. R., Wijnands, A. P. J., and

Auregan, Y. (1994). “Theoretical-study and experimental-study of quasi-

steady-flow separation within the glottis during phonation—Application to

a modified 2-mass model,” J. Acoust. Soc. Am. 96, 3416–3431.

Schoentgen, J., and Lucero, J. C. (2013). “Synthesis by rule of disordered

voices,” in Advances in Nonlinear Speech Processing, edited by T.

Drugman and T. Dutoit (Springer-Verlag, Berlin), pp. 120–127.

Steinecke, I., and Herzel, H. (1995). “Bifurcations in an asymmetric vocal-

fold model,” J. Acoust. Soc. Am. 97, 1874–1884.

Story, B. H., and Titze, I. R. (1995). “Voice simulation with a body-cover

model of the vocal folds,” J. Acoust. Soc. Am. 97, 1249–1260.

Titze, I. R. (1984). “Parametrization of the glottal area, glottal flow and

vocal fold contact area,” J. Acoust. Soc. Am. 75, 570–580.

Titze, I. R., and Alipour, F. (2006). The Myoelastic Aerodynamic Theory of
Speech Production (National Center for Voice and Speech, Iowa City,

IA), Chap. 5, pp. 258–262.

Titze, I. R., and Worley, A. S. (2009). “Modeling source-filter interaction in

belting and high-pitched operatic male singing,” J. Acoust. Soc. Am. 126,

1530–1540.

van den Berg, J. W., Zantema, J. T., and Doornenbal, P. (1957). “On the air

resistance and the Bernoulli effect of the human larynx,” J. Acoust. Soc.

Am. 29, 626–631.

Za~nartu, M., Galindo, G. G., Erath, B. D., Peterson, S. D., Wodicka, G. R.,

and Hillman, R. E. (2014). “Modeling the effect of a posterior glottal

opening on vocal fold dynamics with implications for vocal hyper-

function,” J. Acoust. Soc. Am. 136, 3262–3271.

J. Acoust. Soc. Am., Vol. 137, No. 5, May 2015 J. C. Lucero and J. Schoentgen: Letters to the Editor 2973


	s1
	d1
	d2
	d3
	d4
	d5
	l
	n1
	d6
	s2
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	d14
	d15
	d16
	d17
	d18
	d19
	s3
	d20
	s4
	f1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16

